首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 5 毫秒
1.
Transfer line balancing problems (TLBP) deal with the optimization of serial machining lines. At every machine, the operations are performed by blocks. The operations within each block are executed simultaneously by the same multi-spindle head. In the lines considered here, the spindle heads of each machine are activated sequentially. The objective of TLBP is to group the operations into blocks and to assign the blocks to machines in order to minimize the total amount of the required equipment (spindle heads and machines). This problem is described and all the most promising exact and heuristic algorithms, recently suggested for it, are compared via detailed computational experiments.  相似文献   

2.
This paper addresses a flexible delivery and pickup problem with time windows (FDPPTW) and formulates the problem into a mixed binary integer programming model in order to minimize the number of vehicles and to minimize the total traveling distance. This problem is shown to be NP-hard. In this study, therefore, a coevolutionary algorithm incorporated with a variant of the cheapest insertion method is developed to speed up the solution procedure. The FDPPTW scheme overcomes the shortcomings of the existing schemes for the delivery and pickup problems. By testing with some revised Solomon's benchmark problems, the computational results have shown the efficiency and the effectiveness of the developed algorithm.  相似文献   

3.
Machine scheduling problem has been extensively studied by researchers for many decades in view of its numerous applications on solving practical problems. Due to the complexity of this class of scheduling problems, various approximation solution approaches have been presented in the literature. In this paper, we present a genetic algorithm (GA) based heuristic approach to solve the problem of two machine no-wait flowshop scheduling problems that the setup time on the machines is class dependent, and the objective is to minimize the maximum lateness of the jobs processed. This class of machine scheduling problems has many practical applications in manufacturing industry, such as metal refinery operations, food processing industry and chemical products production processes, in which no interruption between subsequent processes is allowed and the products can be grouped into families. Extensive computation experiments have been conducted to evaluate the effectiveness of the proposed algorithm. Results show the proposed methodology is suitable to be adopted for the development of an efficient scheduling plan for this class of problems in real life application.  相似文献   

4.
This paper addresses the problem of finding robust and stable solutions for the flexible job shop scheduling problem with random machine breakdowns. A number of bi-objective measures combining the robustness and stability of the predicted schedule are defined and compared while using the same rescheduling method. Consequently, a two-stage Hybrid Genetic Algorithm (HGA) is proposed to generate the predictive schedule. The first stage optimizes the primary objective, minimizing makespan in this work, where all the data is considered to be deterministic with no expected disruptions. The second stage optimizes the bi-objective function and integrates machines assignments and operations sequencing with the expected machine breakdown in the decoding space. An experimental study and Analysis of Variance (ANOVA) is conducted to study the effect of different proposed measures on the performance of the obtained results. Results indicate that different measures have different significant effects on the relative performance of the proposed method. Furthermore, the effectiveness of the current proposed method is compared against three other methods; two are taken from literature and the third is a combination of the former two methods.  相似文献   

5.
This paper analyzes a dynamic lot-sizing problem, in which the order size of multiple products and a single container type are simultaneously considered. In the problem, each order (product) placed in a period is immediately shipped by some containers in the period and the total freight cost is proportional to the number of containers used. It is also assumed that backlogging is not allowed. The objective of this study is to simultaneously determine the lot-sizes and the transportation policy that minimizes the total costs, which consist of production cost, inventory holding cost, and freight cost. Because this problem is NP-hard, a heuristic algorithm with an adjustment mechanism is proposed based on the optimal solution properties. The computational results from a set of simulation experiment are also presented.  相似文献   

6.
7.
This paper studies a single-product, multi-period, stochastic inventory problem that imposes the lower and upper bounds on the cumulative order quantity during a planning horizon and allows two delivery lead times. This model includes three features. The first one is that a buyer purchases a fixed capacity from a supplier at the beginning of a planning horizon and the buyer’s total cumulative order quantity during the planning horizon is constrained with the capacity. The second one is that the buyer agrees to purchase the product at least a certain percentage of the purchased capacity during the planning horizon. The third one is that the supplier allows the buyer to order the product with two-delivery-lead-times. We identify conditions under which a myopic ordering policy is optimal. We also develop an algorithm to calculate the optimal capacity when the minimum cumulative order quantity commitment is a certain percentage of the capacity. We then use the algorithm to evaluate the effect of the various parameters on the buyer’s minimum expected total cost during the planning horizon. Our computation shows that the buyer would benefit from the commitments and two-delivery-lead-times.  相似文献   

8.
9.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号