首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, empirical likelihood inferences for varying-coefficient single-index model with right-censored data are investigated. By a synthetic data approach, we propose an empirical log-likelihood ratio function for the index parameters, which are of primary interest, and show that its limiting distribution is a mixture of central chi-squared distributions. In order that the Wilks’ phenomenon holds, we propose an adjusted empirical log-likelihood ratio for the index parameters. The adjusted empirical log-likelihood is shown to have a standard chi-squared limiting distribution. Simulation studies are undertaken to assess the finite sample performance of the proposed confidence intervals. A real example is presented for illustration.  相似文献   

2.
High-dimensional data are becoming prevalent, and many new methodologies and accompanying theories for high-dimensional data analysis have emerged in response. Empirical likelihood, as a classical nonparametric method of statistical inference, has proved to possess many good features. In this paper, our focus is to investigate the asymptotic behavior of empirical likelihood for regression coefficients in high-dimensional linear models. We give regularity conditions under which the standard normal calibration of empirical likelihood is valid in high dimensions. Both random and fixed designs are considered. Simulation studies are conducted to check the finite sample performance.  相似文献   

3.
4.
This paper concerns estimating parameters in a high-dimensional dynamic factor model by the method of maximum likelihood. To accommodate missing data in the analysis, we propose a new model representation for the dynamic factor model. It allows the Kalman filter and related smoothing methods to evaluate the likelihood function and to produce optimal factor estimates in a computationally efficient way when missing data is present. The implementation details of our methods for signal extraction and maximum likelihood estimation are discussed. The computational gains of the new devices are presented based on simulated data sets with varying numbers of missing entries.  相似文献   

5.
This paper develops a maximum likelihood (ML) method to estimate partially observed diffusion models based on data sampled at discrete times. The method combines two techniques recently proposed in the literature in two separate steps. In the first step, the closed form approach of Aït-Sahalia (2008) is used to obtain a highly accurate approximation to the joint transition probability density of the latent and the observed states. In the second step, the efficient importance sampling technique of Richard and Zhang (2007) is used to integrate out the latent states, thereby yielding the likelihood function. Using both simulated and real data, we show that the proposed ML method works better than alternative methods. The new method does not require the underlying diffusion to have an affine structure and does not involve infill simulations. Therefore, the method has a wide range of applicability and its computational cost is moderate.  相似文献   

6.
Lei He  Rong-Xian Yue 《Metrika》2017,80(6-8):717-732
In this paper, we consider the R-optimal design problem for multi-factor regression models with heteroscedastic errors. It is shown that a R-optimal design for the heteroscedastic Kronecker product model is given by the product of the R-optimal designs for the marginal one-factor models. However, R-optimal designs for the additive models can be constructed from R-optimal designs for the one-factor models only if sufficient conditions are satisfied. Several examples are presented to illustrate and check optimal designs based on R-optimality criterion.  相似文献   

7.
Qiang Chen  Lu Lin  Lixing Zhu 《Metrika》2010,71(1):45-58
We in this paper investigate smoothed score function based confidence regions for parameters in single-index models. Because a plug-in estimator of nonparametric link function causes the bias of smoothed score function to be non-negligible, the limit of the score function is asymptotically normal with a non-zero mean due to the slow convergence rate of nonparametric estimation. A bias-corrected smoothed score function is recommended for achieving centered normal limit without under-smoothing or high order kernel, and then the confidence region can be constructed by chi-square distribution. Simulation studies are carried out to assess the performance of bias-corrected local likelihood, and to compare with normal approximation approach.  相似文献   

8.
9.
Feng Li  Lu Lin  Yuxia Su 《Metrika》2013,76(2):225-238
Variable selection plays an important role in the high dimensionality data analysis, the Dantzig selector performs variable selection and model fitting for linear and generalized linear models. In this paper we focus on variable selection and parametric estimation for partially linear models via the Dantzig selector. Large sample asymptotic properties of the Dantzig selector estimator are studied when sample size n tends to infinity while p is fixed. We see that the Dantzig selector might not be consistent. To remedy this drawback, we take the adaptive Dantzig selector motivated by Dicker and Lin (submitted). Moreover, we obtain that the adaptive Dantzig selector estimator for the parametric component of partially linear models has the oracle properties under some appropriate conditions. As generalizations of the Dantzig selector, both the adaptive Dantzig selector and the Dantzig selector optimization can be implemented by the efficient algorithm DASSO proposed by James et al. (J R Stat Soc Ser B 71:127–142, 2009). Choices of tuning parameter and bandwidth are also discussed.  相似文献   

10.
Zhaoping Hong  Yuao Hu  Heng Lian 《Metrika》2013,76(7):887-908
In this paper, we consider the problem of simultaneous variable selection and estimation for varying-coefficient partially linear models in a “small $n$ , large $p$ ” setting, when the number of coefficients in the linear part diverges with sample size while the number of varying coefficients is fixed. Similar problem has been considered in Lam and Fan (Ann Stat 36(5):2232–2260, 2008) based on kernel estimates for the nonparametric part, in which no variable selection was investigated besides that $p$ was assume to be smaller than $n$ . Here we use polynomial spline to approximate the nonparametric coefficients which is more computationally expedient, demonstrate the convergence rates as well as asymptotic normality of the linear coefficients, and further present the oracle property of the SCAD-penalized estimator which works for $p$ almost as large as $\exp \{n^{1/2}\}$ under mild assumptions. Monte Carlo studies and real data analysis are presented to demonstrate the finite sample behavior of the proposed estimator. Our theoretical and empirical investigations are actually carried out for the generalized varying-coefficient partially linear models, including both Gaussian data and binary data as special cases.  相似文献   

11.
Minggen Lu 《Metrika》2018,81(1):1-17
We consider spline-based quasi-likelihood estimation for mixed Poisson regression with single-index models. The unknown smooth function is approximated by B-splines, and a modified Fisher scoring algorithm is employed to compute the estimates. The spline estimate of the nonparametric component is shown to achieve the optimal rate of convergence, and the asymptotic normality of the regression parameter estimates is still valid even if the variance function is misspecified. The semiparametric efficiency of the model can be established if the variance function is correctly specified. The variance of the regression parameter estimates can be consistently estimated by a simple procedure based on the least-squares estimation. The proposed method is evaluated via an extensive Monte Carlo study, and the methodology is illustrated on an air pollution study.  相似文献   

12.
Lichun Wang  Peng Lai  Heng Lian 《Metrika》2013,76(8):1083-1103
Generalized varying coefficient partially linear models are a flexible class of semiparametric models that deal with data with different types of responses. In this paper, we focus on polynomial spline estimator as a computationally easier alternative to the more commonly used local polynomial regression approach, since one can directly take advantage of many existing implementations for generalized linear models. Furthermore, motivated by the high dimensionality characteristics that accompany many modern data sets nowadays, we investigate its asymptotic properties when both the number of nonparametric and the number of parametric components grows with, but is still smaller than, the sample size. Simulations and a real data example are used to illustrate our proposal.  相似文献   

13.
We consider ARMAX models with heteroscedastic residuals. Consistent estimation of the regression coefficient allows the Bicker-White approach to heteroscedasticity to be extended to moving averages of heteroscedastic disturbances. Tests for the presence of a moving-average or of heteroscedasticity are developed and estimation of the moving-average parameters considered.  相似文献   

14.
Wei Yu  Cuizhen Niu  Wangli Xu 《Metrika》2014,77(5):675-693
In this paper, we use the empirical likelihood method to make inferences for the coefficient difference of a two-sample linear regression model with missing response data. The commonly used empirical likelihood ratio is not concave for this problem, so we append a natural and well-explained condition to the likelihood function and propose three types of restricted empirical likelihood ratios for constructing the confidence region of the parameter in question. It can be demonstrated that all three empirical likelihood ratios have, asymptotically, chi-squared distributions. Simulation studies are carried out to show the effectiveness of the proposed approaches in aspects of coverage probability and interval length. A real data set is analysed with our methods as an example.  相似文献   

15.
16.
Consider the heteroscedastic regression model Y (j)(x in , t in ) = t in βg(x in ) + σ in e (j)(x in ), 1 ≤ j ≤ m, 1 ≤ i ≤ n, where sin2=f(uin){\sigma_{in}^{2}=f(u_{in})}, (x in , t in , u in ) are fixed design points, β is an unknown parameter, g(·) and f(·) are unknown functions, and the errors {e (j)(x in )} are mean zero NA random variables. The moment consistency for least-squares estimators and weighted least-squares estimators of β is studied. In addition, the moment consistency for estimators of g(·) and f(·) is investigated.  相似文献   

17.
Phenomena such as the Great Moderation have increased the attention of macroeconomists towards models where shock processes are not (log-)normal. This paper studies a class of discrete-time rational expectations models where the variance of exogenous innovations is subject to stochastic regime shifts. We first show that, up to a second-order approximation using perturbation methods, regime switching in the variances has an impact only on the intercept coefficients of the decision rules. We then demonstrate how to derive the exact model likelihood for the second-order approximation of the solution when there are as many shocks as observable variables. We illustrate the applicability of the proposed solution and estimation methods in the case of a small DSGE model.  相似文献   

18.
The relevance-weighted likelihood function weights individual contributions to the likelihood according to their relevance for the inferential problem of interest. Consistency and asymptotic normality of the weighted maximum likelihood estimator were previously proved for independent sequences of random variables. We extend these results to apply to dependent sequences, and, in so doing, provide a unified approach to a number of diverse problems in dependent data. In particular, we provide a heretofore unknown approach for dealing with heterogeneity in adaptive designs, and unify the smoothing approach that appears in many foundational papers for independent data. Applications are given in clinical trials, psychophysics experiments, time series models, transition models, and nonparametric regression. Received: April 2000  相似文献   

19.
Wu Wang  Zhongyi Zhu 《Metrika》2017,80(1):1-16
In this paper, we propose a new Bayesian quantile regression estimator using conditional empirical likelihood as the working likelihood function. We show that the proposed estimator is asymptotically efficient and the confidence interval constructed is asymptotically valid. Our estimator has low computation cost since the posterior distribution function has explicit form. The finite sample performance of the proposed estimator is evaluated through Monte Carlo studies.  相似文献   

20.
We consider pseudo-panel data models constructed from repeated cross sections in which the number of individuals per group is large relative to the number of groups and time periods. First, we show that, when time-invariant group fixed effects are neglected, the OLS estimator does not converge in probability to a constant but rather to a random variable. Second, we show that, while the fixed-effects (FE) estimator is consistent, the usual t statistic is not asymptotically normally distributed, and we propose a new robust t statistic whose asymptotic distribution is standard normal. Third, we propose efficient GMM estimators using the orthogonality conditions implied by grouping and we provide t tests that are valid even in the presence of time-invariant group effects. Our Monte Carlo results show that the proposed GMM estimator is more precise than the FE estimator and that our new t test has good size and is powerful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号