首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《Quantitative Finance》2013,13(2):116-132
Abstract

This paper develops a family of option pricing models when the underlying stock price dynamic is modelled by a regime switching process in which prices remain in one volatility regime for a random amount of time before switching over into a new regime. Our family includes the regime switching models of Hamilton (Hamilton J 1989 Econometrica 57 357–84), in which volatility influences returns. In addition, our models allow for feedback effects from returns to volatilities. Our family also includes GARCH option models as a special limiting case. Our models are more general than GARCH models in that our variance updating schemes do not only depend on levels of volatility and asset innovations, but also allow for a second factor that is orthogonal to asset innovations. The underlying processes in our family capture the asymmetric response of volatility to good and bad news and thus permit negative (or positive) correlation between returns and volatility. We provide the theory for pricing options under such processes, present an analytical solution for the special case where returns provide no feedback to volatility levels, and develop an efficient algorithm for the computation of American option prices for the general case.  相似文献   

2.
Option hedging is a critical risk management problem in finance. In the Black–Scholes model, it has been recognized that computing a hedging position from the sensitivity of the calibrated model option value function is inadequate in minimizing variance of the option hedge risk, as it fails to capture the model parameter dependence on the underlying price (see e.g. Coleman et al., J. Risk, 2001, 5(6), 63–89; Hull and White, J. Bank. Finance, 2017, 82, 180–190). In this paper, we demonstrate that this issue can exist generally when determining hedging position from the sensitivity of the option function, either calibrated from a parametric model from current option prices or estimated nonparametricaly from historical option prices. Consequently, the sensitivity of the estimated model option function typically does not minimize variance of the hedge risk, even instantaneously. We propose a data-driven approach to directly learn a hedging function from the market data by minimizing variance of the local hedge risk. Using the S&P 500 index daily option data for more than a decade ending in August 2015, we show that the proposed method outperforms the parametric minimum variance hedging method proposed in Hull and White [J. Bank. Finance, 2017, 82, 180–190], as well as minimum variance hedging corrective techniques based on stochastic volatility or local volatility models. Furthermore, we show that the proposed approach achieves significant gain over the implied BS delta hedging for weekly and monthly hedging.  相似文献   

3.
《Quantitative Finance》2013,13(4):257-263
Abstract

We study the problem of reconstruction of the asset price dependent local volatility from market prices of options with different strikes. For a general diffusion process we apply the linearization technique and we conclude that the option price can be obtained as the sum of the Black-Scholes formula and of an explicit functional which is linear in perturbation of volatility. We obtain an integral equation for this functional and we show that under some natural conditions it can be inverted for volatility. We demonstrate the stability of the linearized problem, and we propose a numerical algorithm which is accurate for volatility functions with different properties.  相似文献   

4.
This paper considers a single barrier option under a local volatility model and shows that any down-and-in option can be priced by a combination of three standard European options whose volatility functions are connected through symmetrization. The symmetrized volatility function is approximated by a sequence of smooth functions that converges to the original one. An approximation formula is developed to price the standard European options with the approximated volatility functions. Finally, we apply the Aitken convergence accelerator to obtain an approximate price of the down-and-in option. Other single barrier options are priced in a similar fashion.  相似文献   

5.
In this paper we study volatility functions. Our main assumption is that the volatility is a function of time and is either deterministic, or stochastic but driven by a Brownian motion independent of the stock. Our approach is based on estimation of an unknown function when it is observed in the presence of additive noise. The set up is that the prices are observed over a time interval [0, t], with no observations over (t, T), however there is a value for volatility at T. This value is may be inferred from options, or provided by an expert opinion. We propose a forecasting/interpolating method for such a situation. One of the main technical assumptions is that the volatility is a continuous function, with derivative satisfying some smoothness conditions. Depending on the degree of smoothness there are two estimates, called filters, the first one tracks the unknown volatility function and the second one tracks the volatility function and its derivative. Further, in the proposed model the price of option is given by the Black–Scholes formula with the averaged future volatility. This enables us to compare the implied volatility with the averaged estimated historical volatility. This comparison is done for three companies and has shown that the two estimates of volatility have a weak statistical relation.  相似文献   

6.
This paper considers the problem of pricing American options when the dynamics of the underlying are driven by both stochastic volatility following a square-root process as used by Heston [Rev. Financial Stud., 1993, 6, 327–343], and by a Poisson jump process as introduced by Merton [J. Financial Econ., 1976, 3, 125–144]. Probability arguments are invoked to find a representation of the solution in terms of expectations over the joint distribution of the underlying process. A combination of Fourier transform in the log stock price and Laplace transform in the volatility is then applied to find the transition probability density function of the underlying process. It turns out that the price is given by an integral dependent upon the early exercise surface, for which a corresponding integral equation is obtained. The solution generalizes in an intuitive way the structure of the solution to the corresponding European option pricing problem obtained by Scott [Math. Finance, 1997, 7(4), 413–426], but here in the case of a call option and constant interest rates.  相似文献   

7.
A jump diffusion model coupled with a local volatility function has been suggested by Andersen and Andreasen (2000). By generating a set of option prices assuming a jump diffusion with known parameters, we investigate two crucial challenges intrinsic to this type of model: calibration of parameters and hedging of jump risk. Even though the estimation problem is ill-posed, our results suggest that the model can be calibrated with sufficient accuracy. Two different strategies are explored for hedging jump risk: a semi-static approach and a dynamic technique. Simulation experiments indicate that each of these methods can sharply reduce risk exposure. JEL Classification G12 · G13  相似文献   

8.
In this paper we develop a general method for deriving closed-form approximations of European option prices and equivalent implied volatilities in stochastic volatility models. Our method relies on perturbations of the model dynamics and we show how the expansion terms can be calculated using purely probabilistic methods. A flexible way of approximating the equivalent implied volatility from the basic price expansion is also introduced. As an application of our method we derive closed-form approximations for call prices and implied volatilities in the Heston [Rev. Financial Stud., 1993, 6, 327–343] model. The accuracy of these approximations is studied and compared with numerically obtained values.  相似文献   

9.
《Quantitative Finance》2013,13(5):353-362
Abstract

In this paper, we generalize the recently developed dimension reduction technique of Vecer for pricing arithmetic average Asian options. The assumption of constant volatility in Vecer's method will be relaxed to the case that volatility is randomly fluctuating and is driven by a mean-reverting (or ergodic) process. We then use the fast mean-reverting stochastic volatility asymptotic analysis introduced by Fouque, Papanicolaou and Sircar to derive an approximation to the option price which takes into account the skew of the implied volatility surface. This approximation is obtained by solving a pair of one-dimensional partial differential equations.  相似文献   

10.
The GARCH model has been very successful in capturing the serial correlation of asset return volatilities. As a result, applying the model to options pricing attracts a lot of attention. However, previous tree-based GARCH option pricing algorithms suffer from exponential running time, a cut-off maturity, inaccuracy, or some combination thereof. Specifically, this paper proves that the popular trinomial-tree option pricing algorithms of Ritchken and Trevor (Ritchken, P. and Trevor, R., Pricing options under generalized GARCH and stochastic volatility processes. J. Finance, , 54(1), 377–402.) and Cakici and Topyan (Cakici, N. and Topyan, K., The GARCH option pricing model: a lattice approach. J. Comput. Finance, , 3(4), 71–85.) explode exponentially when the number of partitions per day, n, exceeds a threshold determined by the GARCH parameters. Furthermore, when explosion happens, the tree cannot grow beyond a certain maturity date, making it unable to price derivatives with a longer maturity. As a result, the algorithms must be limited to using small n, which may have accuracy problems. The paper presents an alternative trinomial-tree GARCH option pricing algorithm. This algorithm provably does not have the short-maturity problem. Furthermore, the tree-size growth is guaranteed to be quadratic if n is less than a threshold easily determined by the model parameters. This level of efficiency makes the proposed algorithm practical. The surprising finding for the first time places a tree-based GARCH option pricing algorithm in the same complexity class as binomial trees under the Black–Scholes model. Extensive numerical evaluation is conducted to confirm the analytical results and the numerical accuracy of the proposed algorithm. Of independent interest is a simple and efficient technique to calculate the transition probabilities of a multinomial tree using generating functions.  相似文献   

11.
In this paper we study the pricing and hedging of options on realized variance in the 3/2 non-affine stochastic volatility model by developing efficient transform-based pricing methods. This non-affine model gives prices of options on realized variance that allow upward-sloping implied volatility of variance smiles. Heston's model [Rev. Financial Stud., 1993, 6, 327–343], the benchmark affine stochastic volatility model, leads to downward-sloping volatility of variance smiles—in disagreement with variance markets in practice. Using control variates, we propose a robust method to express the Laplace transform of the variance call function in terms of the Laplace transform of the realized variance. The proposed method works in any model where the Laplace transform of realized variance is available in closed form. Additionally, we apply a new numerical Laplace inversion algorithm that gives fast and accurate prices for options on realized variance, simultaneously at a sequence of variance strikes. The method is also used to derive hedge ratios for options on variance with respect to variance swaps.  相似文献   

12.
We treat the problem of option pricing under a stochastic volatility model that exhibits long-range dependence. We model the price process as a Geometric Brownian Motion with volatility evolving as a fractional Ornstein–Uhlenbeck process. We assume that the model has long-memory, thus the memory parameter H in the volatility is greater than 0.5. Although the price process evolves in continuous time, the reality is that observations can only be collected in discrete time. Using historical stock price information we adapt an interacting particle stochastic filtering algorithm to estimate the stochastic volatility empirical distribution. In order to deal with the pricing problem we construct a multinomial recombining tree using sampled values of the volatility from the stochastic volatility empirical measure. Moreover, we describe how to estimate the parameters of our model, including the long-memory parameter of the fractional Brownian motion that drives the volatility process using an implied method. Finally, we compute option prices on the S&P 500 index and we compare our estimated prices with the market option prices.  相似文献   

13.

This paper introduces a structural scenario-based model with debt rollover risk and a higher-fidelity treatment of the bankruptcy procedure. The emerging stock price process is a generalized Brownian motion with state-dependent local volatility, and the resultant implied volatility smile is due exclusively to structural features (debt rollover and credit risks). Therefore, the model reinforces structural foundations of local volatility option pricing models. The paper advocates a joint modeling and calibration framework for multiple classes of derivatives on the firm’s asset value. In particular, an empirical application to Solar City equity and stock option valuation demonstrates the versatility and efficiency gains of the suggested model.

  相似文献   

14.
Abstract

In this study the Taiwan Insurance Guaranty Fund (TIGF) is introduced to investigate the ex ante assessment insurance guaranty scheme. We study the bankruptcy cost when a financially troubled life insurer is taken over by TIGF. The pricing formula of the fair premium of TIGF incorporating the regulatory forbearance is derived. The embedded Parisian option due to regulatory forbearance on fair premiums is investigated. The numerical results show that leverage ratio, asset volatility, grace period, and intervention criterion influence the default costs. Asset volatility has a significant effect on the default option, while leverage ratio is shown to aggravate the negative influence from the volatility of risky asset. Furthermore, the numerical analysis concludes that the premium for the insurance guaranty fund is risk sensitive and that a risk-based premium scheme could be implemented, hence, to ease the moral hazard.  相似文献   

15.
Abstract

The volatility smile and systematic mispricing of the Black–Scholes option pricing model are the typical motivation for examining stochastic processes other than geometric Brownian motion to describe the underlying stock price. In this paper a new stochastic process is presented, which is a special case of the skew-Brownian motion of Itô and McKean. The process in question is the sum of a standard Brownian motion and an independent reflecting Brownian motion that is similar in construction to the stochastic representation of a skew-normal random variable. This stochastic process is taken in its exponential form to price European options. The derived option price nests the Black–Scholes equation as a special case and is flexible enough to accommodate stochastic volatility as well as stochastic skewness.  相似文献   

16.
This paper applies fuzzy set theory to the Cox, Ross and Rubinstein (CRR) model to set up the fuzzy binomial option pricing model (OPM). The model can provide reasonable ranges of option prices, which many investors can use it for arbitrage or hedge. Because of the CRR model can provide only theoretical reference values for a generalized CRR model in this article we use fuzzy volatility and fuzzy riskless interest rate to replace the corresponding crisp values. In the fuzzy binomial OPM, investors can correct their portfolio strategy according to the right and left value of triangular fuzzy number and they can interpret the optimal difference, according to their individual risk preferences. Finally, in this study an empirical analysis of S&P 500 index options is used to find that the fuzzy binomial OPM is much closer to the reality than the generalized CRR model.This project has been supported by NSC 93-2416-H-009-024.JEL Classification:  相似文献   

17.
《Quantitative Finance》2013,13(3):256-265
We investigate persistence in CRSP monthly excess stock returns, using a state space model with stable disturbances. The non-Gaussian state space model with volatility persistence is estimated by maximum likelihood, using the optimal filtering algorithm given by Sorenson and Alspach (1971 Automatica 7 465–79). The conditional distribution has a stable α of 1.89, and normality is strongly rejected even after accounting for GARCH. However, stock returns do not contain a significant mean-reverting component. The optimal predictor is the unconditional expectation of the series, which we estimate to be 9.8% per annum.  相似文献   

18.
The rough Bergomi model, introduced by Bayer et al. [Quant. Finance, 2016, 16(6), 887–904], is one of the recent rough volatility models that are consistent with the stylised fact of implied volatility surfaces being essentially time-invariant, and are able to capture the term structure of skew observed in equity markets. In the absence of analytical European option pricing methods for the model, we focus on reducing the runtime-adjusted variance of Monte Carlo implied volatilities, thereby contributing to the model’s calibration by simulation. We employ a novel composition of variance reduction methods, immediately applicable to any conditionally log-normal stochastic volatility model. Assuming one targets implied volatility estimates with a given degree of confidence, thus calibration RMSE, the results we demonstrate equate to significant runtime reductions—roughly 20 times on average, across different correlation regimes.  相似文献   

19.
The rough Bergomi (rBergomi) model, introduced recently in Bayer et al. [Pricing under rough volatility. Quant. Finance, 2016, 16(6), 887–904], is a promising rough volatility model in quantitative finance. It is a parsimonious model depending on only three parameters, and yet remarkably fits empirical implied volatility surfaces. In the absence of analytical European option pricing methods for the model, and due to the non-Markovian nature of the fractional driver, the prevalent option is to use the Monte Carlo (MC) simulation for pricing. Despite recent advances in the MC method in this context, pricing under the rBergomi model is still a time-consuming task. To overcome this issue, we have designed a novel, hierarchical approach, based on: (i) adaptive sparse grids quadrature (ASGQ), and (ii) quasi-Monte Carlo (QMC). Both techniques are coupled with a Brownian bridge construction and a Richardson extrapolation on the weak error. By uncovering the available regularity, our hierarchical methods demonstrate substantial computational gains with respect to the standard MC method. They reach a sufficiently small relative error tolerance in the price estimates across different parameter constellations, even for very small values of the Hurst parameter. Our work opens a new research direction in this field, i.e. to investigate the performance of methods other than Monte Carlo for pricing and calibrating under the rBergomi model.  相似文献   

20.
Abstract

In this paper we employ the theory of real option pricing to address problems in the area of operational risk management. We develop a two-stage model to help firms determine the optimal suspension-reactivation triggers in the events of pandemics. In the first stage, we propose a regime-dependent epidemic model to simulate the spread of the virus, depending on whether the firm is active or inactive. In the second stage, we view the reactivation decision as a call option and the suspension decision as a put option, and use dynamic programming methods to obtain the optimal switching thresholds. Our method can be regarded as a quantitative implementation of the CDC’s instructions for pandemic preparation. We find that when they take the uncertainty of disease transmission into consideration, firms are more conservative about the decisions of suspension and reactivation. We also find that when firms incur switching costs, the suspension threshold increases with costs, whereas the reactivation threshold decreases with costs. By adopting disease control policies, firms can increase their values in both regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号