首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
通过镧/氮两种元素对纳米二氧化钛(Ti O2)进行了改性,并利用镧/氮复合掺杂的纳米二氧化钛光催化剂对亚甲基蓝染料在可见光下进行了降解研究。实验结果表明,掺杂剂配比、煅烧温度、煅烧时间对催化剂的光催化效果具有重要影响。利用制备得到镧/氮复合掺杂纳米二氧化钛光催化剂进行了染料脱除最佳条件研究。结果表明,催化剂浓度、亚甲基蓝浓度、O2含量、p H值等是影响染料在可见光下光催化降解的主要因素,在最佳实验条件下,镧/氮掺杂的光催化氧化降解率较高。同时利用扫描电镜(SEM)和透射扫描电镜图谱(TEM)表征了光催化剂的微观性质。根据此结果,推断本研究制备的镧/氮复合掺杂的纳米二氧化钛是混晶型的光催化剂。  相似文献   

2.
李荡  张杨 《化工管理》2022,(34):92-95
首次以电化学沉积法制备的ZnO纳米棒阵列为模板,采用溶胶-凝胶方法制备了TiO2纳米管阵列。通过扫描电子显微镜、X射线能谱仪、X射线衍射仪等技术对样品的结构、表面形貌及组成进行了表征。研究了电解液浓度对ZnO薄膜表面形态的影响,溶胶陈化时间对TiO2结构的影响。并将TiO2纳米管阵列作为太阳能电池的阳极,研究其光电转化效率。结果表明:ZnCl2浓度为0.015 mol/L时沉积的ZnO质量较高,以该条件下制备的ZnO为模板,在陈化时间为12 h下可制备出尺寸均一,结构较好的有序TiO2纳米管阵列。将陈化时间为12 h条件下制备的TiO2纳米管阵列组装至太阳能电池中,电池的效率可高达40%。  相似文献   

3.
传统的g-C3N4光催化材料存在光生电子和空穴复合率高、可见光利用率低、量子效率低、比表面积小和内阻大等问题,光催化性能不佳。采用煅烧、水热反应等一系列方法,以g-C3N4纳米片为基底,将不同含量的CdS与g-C3N4纳米片复合,通过上转换作用和异质结的构建,制备得到具有不同配比CdS/g-C3N4光催化复合材料。采用扫描电子显微镜(SEM)、X射线衍射(XRD)、紫外可见分光光度计、BET等表征仪器或方法,对光催化复合材料的组成、微观形貌、比表面积以及光催化性质进行考察,并将罗丹明B视为污染物,对可见光下的降解性能进行分析。研究发现,7%CdS/g-C3N4光催化复合材料对罗丹明B的降解性能明显优于5%CdS/g-C3N4光催化复合材料和纯g-C3N4纳米片。研究结果表明,上转换作...  相似文献   

4.
湿法提纯和酸处理凹凸棒石提高其比表面积和吸附性能;通过浸渍法制备了Fe-Ag-La多元金属改性二氧化钛;以改性后的凹凸棒石为载体,制备了负载型光催化复合材料。用XRD、UV-Vis和SEM等方法对材料进行分析,用亚甲基蓝(MB)为模拟有机污染物,研究金属掺杂量、催化剂用量、光照时间等因素对光催化活性的影响。实验结果表明,Fe-Ag-La掺杂量为1%,催化剂加入量为10mg/L,紫外灯照射MB溶液2h,溶液的脱色降解率可达90%以上。催化剂循环使用5次后MB溶液的脱色率仍在80%以上。实验还发现负载型光催化复合材料在太阳光下也具有很好的活性。  相似文献   

5.
为了研究不同热处理温度、还原方式对薄膜光催化性能的影响,根据改进的Hummers法制备了5mg/mL氧化石墨烯分散液,采用匀胶法在玻璃片基底上制备了氧化石墨烯薄膜。通过SEM扫描电子显微镜、EDS能谱仪和拉曼光谱仪对不同热处理还原前后薄膜的微观形貌、成分、结构进行表征,并在模拟日光型光源照明下,对40mg/L亚甲基蓝溶液进行降解。结果表明:随着热处理温度的升高,薄膜表面含氧官能团去除越彻底,EDS能谱中C/O原子比越大,拉曼光谱中D峰与G峰强度比(ID/IG)越强,与空气热处理还原法相比,真空热处理更加温和,表面缺陷修复得更多。在相同温度下,真空热处理薄膜光催化降解能力比空气热处理高,可为研究石墨烯催化降解提供参考。  相似文献   

6.
创新提出采用共沉淀法制备石榴石结构锂离子电池无机固态电解质——铝镁双掺杂锂镧锆氧(Li6.4Al0.2La3Zr2-0.5xMgxO12)。利用热重分析(TG)、差示扫描量热仪(DSC)、X射线衍射(XRD)分析试样前驱体在加热过程中的组成和相变,考察最佳烧结温度、烧结时间以及镁掺杂量x,并延伸分析锂离子导电性与温度之间的依赖性。研究发现:1)烧结温度达到630℃时可形成锂镧锆氧;2)最佳烧结温度是1 100℃,最佳烧结时间是6 h;3)当镁掺杂量x为0.1时,制备的Li6.4Al0.2La3Zr1.95Mg0.1O12在室温25℃下的离子电导率为1.93×10-4 S/cm,活化能为0.271 eV。制备得到了具有最完整立方晶体结构、最少杂质相、最大致密度、最小界面电阻、最高离子电导率和最光滑完整表面形...  相似文献   

7.
张晓  刘飞  任智源  杨伦 《化工管理》2022,(34):162-164+168
文章通过动态气泡模板法,在泡沫镍上电沉积制备了磷掺杂的分级多孔Ni电极(hp-NiPx)。采用场发射扫描电子显微镜、能谱仪、X射线衍射仪等手段对hp-NiPx的形貌与物理结构进行表征,观测其微纳尺度上的分级多孔结构,分析电极材料的晶相和结晶度。测试hp-NiPx在碱性电解液中的电催化析氢(HER)性能和析氧(OER)性能,特别是开启电压、塔菲尔斜率、交换电流密度等关键电化学指标。HER和OER反应是在电极表面发生,涉及固(电极)、液(电解液)、气(氢气、氧气)三相。  相似文献   

8.
采用溶胶-凝胶法制备了TiO_2/GR复合材料为光催化剂,以模拟太阳光为光源,研究Cr~(6+)、Fe~(3+)、Cu~(2+)、Ag~+4种重金属离子对甲基橙光催化降解的作用,考察了重金属离子种类、重金属离子浓度、溶液酸度和反应气态氛围对甲基橙光催化效果的影响。实验结果表明:在固定甲基橙和4种重金属离子的的浓度均为30mg/L,除Cr~(6+)对甲基橙的光催化降解起抑制作用外其它3种重金属离子均起促进作用,Fe~(3+)促进效果最好,经过60min光照后,甲基橙的降解率可高达99.6%;当4种重金属离子的浓度下降至5mg/L,对甲基橙光催化降解的促进作用则表现为Cr~(6+)>Fe~(3+)>Cu~(2+)>Ag~+;反应体系的酸度越大,4种重金属离子对甲基橙光催化降解的促进作用越小,在pH=3时,4种重金属离子对甲基橙光催化降解的促进作用最好,表现为Cr~(6+)>Fe~(3+)>Cu~(2+)>Ag~+,而当pH=9时则4种重金属离子均表现为抑制作用;4种重金属离子在O_2、空气和N_2这3种气态氛围中均对甲基橙的光催化降解起促进作用,表现为O_2>空气>N_2。  相似文献   

9.
通过固体吸附剂捕集CO2,是CO2捕集和封存技术中最为有效的手段之一。以粉煤灰和矿渣为原料,通过碱激发剂、发泡剂、稳泡剂制备出具有发达孔隙结构的固废基地聚合物复合多孔材料。采用正交试验对复合多孔材料配比进行优选,制备出抗压强度达到15.395 N,CO2吸附量为156.28 cm3/g的地聚合物复合多孔颗粒。在优选方案的基础上,将13X分子筛、4A分子筛、斜发沸石三种不同类型沸石添加到地聚合物基质中,制备出沸石—地聚合物复合多孔材料。添加沸石后,抗压强度有所降低,但比表面积和孔体积均提高,CO2吸附性能明显改善。其中,添加13X沸石后性能最优,CO2吸附量达到602.43 cm3/g,较未添加沸石的复合多孔材料的CO2吸附能力提高了约3.2倍。  相似文献   

10.
CO2甲烷化是实现碳中和的重要途径。光催化还原CO2制甲烷的关键在于寻找高效的催化剂,尽可能提高CO2的转化率和甲烷的选择性。文章主要根据国内外光催化CO2甲烷化催化剂的专利申请,从国内外申请趋势、主要申请人分布、核心专利、各催化剂技术分支的发展状况等方面明晰了光催化CO2甲烷化的研究进展。同时,指出当前光催化CO2甲烷化催化剂存在的不足、研究热点和应对策略,并对未来的发展趋势进行展望。  相似文献   

11.
采用溶胶-凝胶法制备纳米二氧化钛,以甲基橙为模型污染物,考察了影响纳米二氧化钛光催化活性的主要因素,并采用TEM,XRD等方法对样品进行了表征。结果表明:具有较高光催化活性的纳米二氧化钛的制备条件是钛酸丁酯、无水乙醇、冰乙酸、水的比例(体积比)为10∶19∶8∶4,500℃下煅烧2h;纳米二氧化钛质量浓度为1g/L时光催化效果最佳;纳米TiO2具有锐钛矿型晶体结构,平均粒径为10~20nm。  相似文献   

12.
介绍光催化还原CO2的重要性及廉价金属Fe,Mn,Co配合物的光催化还原CO2的研究,并对其机理进行介绍。  相似文献   

13.
氯化锌活化法制备棉花秸秆活性炭的研究   总被引:4,自引:0,他引:4       下载免费PDF全文
以棉花秸秆为原料,采用氯化锌活化法在不同操作条件下制备活性炭,通过检测活性炭样品的比表面积、亚甲基蓝吸附值和碘吸附值,探讨了浸渍比(氯化锌与原料的质量比)、活化时间和活化温度等操作条件对活性炭样品性能的影响。实验结果表明,在实验条件范围内,氯化锌活化法制备棉花秸秆活性炭适宜的操作条件如下:浸渍比为1.5:1,活化温度为550℃左右,活化时间为90 min,在较优条件下制得活性炭的比表面积可达1 403 m2/g,碘吸附值可达1 188 mg/g,亚甲基蓝吸附值可达238 mg/g。  相似文献   

14.
以Mo/Al/B2O3/金刚石粉体为热爆反应体系,在金刚石颗粒表面形成镀覆涂层,采用X射线衍射(XRD)研究热爆反应产物和金刚石颗粒的物相组成,采用扫描电镜(SEM)观察金刚石颗粒表面的显微形貌。研究发现:热爆反应产物易于粉碎,易于将金刚石颗粒与结合剂分离;随着金刚石含量的增加,试样膨胀逐渐加剧,在高纯Ar气保护下,基体会形成以MoAlB为主相的材料;热爆反应会在金刚石表面形成由Al、Mo2C、Al2O3和AlMo3组成的多元涂层,涂层由大量平均粒径为2 μm的晶粒组成。总体而言,当金刚石含量较低(10%和20%)时,产物中金刚石颗粒表面镀覆良好。  相似文献   

15.
重金属导致的水体污染严重威胁人类健康。以废旧聚苯硫醚(PPS)为原料、氢氧化钾(KOH)为活化剂,探究理想活化温度,制备硫掺杂多孔碳材料,并考察其对Cd2+等重金属离子的吸附性能。通过Boehm滴定分析、元素分析测定吸附剂的酸性基团数量和含硫量,得到最佳活化温度为450℃;通过吸附测试分析,得到优化吸附条件为Cd2+初始浓度250 mg/L、吸附温度35℃、吸附时间90 min,镉离子去除率为98.74%。进一步研究发现:1)吸附效能与吸附剂表面酸性基团数量表现出较强相关性;2)吸附热力学方面,Freundlich模型较Langmuir模型表现出更佳的拟合程度;3)吸附动力学方面,吸附剂对Cd2+的吸附更加符合Lagergren准二级吸附动力学模型,平衡吸附量为30.72 mg/g;4)经过5次N2吸附—脱附循环实验,吸附率下降至稳定值。  相似文献   

16.
健康安全环境(HSE)理念已经成为高校化学工程类本科专业认证的必备通识拓展类伦理课程。基于中国新疆地区丰富的多晶硅产业,设计一个综合性实验—以多晶硅副产物四氯化硅(SiCl4)为硅源制备多孔二氧化硅(SiO2)球形材料。通过综合性实验的实施,让学生深入理解健康理念,树立以人为本的意识;践行安全理念,强化安全第一的责任;增强环境理念,开展环保优先的行动。同时,促进学生了解多晶硅在太阳能光伏电池中的应用,理解碳达峰和碳中和的意义,掌握SiCl4的特点、危害以及“变废为宝”的资源化利用方式,熟悉SiCl4水解制备多孔SiO2纳米球的机理。  相似文献   

17.
以三氧化二锰粉体、氢氧化锂、三氧化二铬以及硫化钠为原料,采用水热反应法制备了掺杂铬或硫的层状锰酸锂.利用扫描电镜(SEM)、电子衍射能谱分析仪(EDS)、X射线衍射仪(XRD)对产物进行了表征分析.结果表明,Cr3+(或S2-)的掺杂随着掺杂比例的增加,掺杂现象越明显,并且是最有前景的具有较高的容量和稳定的循环性能的正极材料.利用水热法用合适的元素及合适的剂量对层状锰酸锂进行掺杂制备,能够稳定其层状结构.  相似文献   

18.
三氟乙酸乙酯是合成有机氟化物常用的原料之一,可合成各种含氟农药、医药及其他含氟精细化学品。制备了绿色功能离子液体1-甲基-(3-磺酸基丙基)咪唑硫酸盐[MIM-PS][HSO4]和1-甲基-(3-磺酸基丙基)咪唑对甲苯磺酸盐[MIM-PS][pTSA]作为备选催化剂,以三氟乙酸(TFA)、无水乙醇(AE)为原料,合成三氟乙酸乙酯。考察了催化剂选择、物料比例、催化剂用量、反应时间和反应温度等工艺条件,以及离子液体的重复利用情况。结果表明:当投料质量比例为:m(TFA)∶m(AE)∶m([MIM-PS][HSO4])=5.7∶3.3∶0.4,反应温度为45℃,反应1.5h,产品收率可达98.3%,离子液体催化剂重复利用4次后活性没有明显降低。  相似文献   

19.
项戈丰 《化工管理》2023,(17):57-60
采用光学显微镜、扫描电镜、X射线衍射等分析手段对Mg-1.5Zn-1.0Gd-0.6Mn合金的铸态、固溶态和挤压态合金的显微组织、力学性能、体外降解性能进行了全面的研究。显微组织观察表明,Mg-1.5Zn-1.0Gd-0.6Mn合金主要由基体α-Mg相和α-Mn相以及ω相(Mg3Zn3Gd2)组成。热挤压显著细化了铸态和固溶态合金的晶粒,消除了缺陷,从而提高了合金的力学性能和耐蚀性能。该合金经过挤压后抗拉强度和屈服强度分别达到313 MPa和275 MPa,塑性也大大提高,达到了16.2%。体外浸泡试验和在SBF中的电化学测试结果表明,随着降解时间的延长,合金表面会有一层腐蚀产物生成,其主要由氢氧化镁和羟基磷灰石组成,且挤压后的耐蚀性最好,腐蚀速率最低为0.32 mm/a。  相似文献   

20.
研究了利用氧化锌脱硫废渣制备纳米级氧化锌,据脱硫催化剂是由w(ZnO)为99.7%的ZnO和甲基纤维素作粘合剂煅烧而成,脱除H2S后变成ZnS,再经氧化成ZnO,确定了最佳工艺条件:煅烧温度为540℃,煅烧时间为2h,浸取温度为80~90℃,沉淀反应溶液pH=6.5。氧化锌产率达95%以上。产品性能稳定,比表面积达50m2/g,氧化锌含量为99.45%,成本可降低1000元/t。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号