共查询到18条相似文献,搜索用时 62 毫秒
1.
基于粒子群优化的模糊聚类分析 总被引:1,自引:0,他引:1
基于求解实优化问题时,粒子群优化算法优于遗传算法。在基于遗传算法的模糊C均值聚类算法基础上,给出了基于粒子群的模糊C均值聚类算法,试验结果表明:该算法克服了传统的模糊C均值聚类算法的缺陷,同时在收敛速度方面明显优于基于遗传算法的模糊C均值聚类算法。 相似文献
2.
牛玉会 《当代经理人(中旬刊)》2006,(8)
粒子群算法(PSO)是一种新兴的基于群智能的随机优化算法,同其它的进化算法相比,其最具吸引人的特征是简单容易实现和更强的全局优化能力。本文较祥细的介绍了粒子群优化的算法,并详细地介绍了在六峰驼背函数上的应用。 相似文献
3.
结合应急物流配送的车辆优化调度问题,根据应急物流配送的突出特点,对应急物流配送车辆调度路径优化进行了探讨。并建立应急物流配送车辆调度模型,用粒子群算法对车辆的配送路径进行优化。最后通过对实例的分析,验证了本文所提出的模型、算法具有合理性和可行性。 相似文献
4.
粒子群算法是一种基于鸟群的智能优化方法,量子粒子群算法是对粒子群算法进行改进的算法,运算规则简单,收敛速度快,变量少,易于编程实现。对于多目标、多约束条件的四连杆机构优化设计,本文提出了一种基于量子粒子群算法求解的设计方法。经过仿真实践,能够有效求解,是求解四连杆机构优化问题的一个较好方案。 相似文献
5.
将物流企业的车辆调度问题建模为一个单目标多约束的优化问题,将免疫原理与粒子群优化算法相结合,提出了一个车辆调度的免疫粒子群算法.该算法能在群体进化时注入满足约束的疫苗,从而加快种群寻优的效率,得到质量更高的解.实验结果显示:相比传统的遗传算法和粒子群算法,该方法能够得到更加满意的车辆调度结果. 相似文献
6.
将物流企业的车辆调度问题建模为一个单目标多约束的优化问题,将免疫原理与粒子群优化算法相结合,提出了一个车辆调度的免疫粒子群算法。该算法能在群体进化时注入满足约束的疫苗,从而加快种群寻优的效率,得到质量更高的解。实验结果显示:相比传统的遗传算法和粒子群算法,该方法能够得到更加满意的车辆调度结果。 相似文献
7.
随着计算机技术在各领域的广泛应用,互联网的迅猛发展使得各类信息以指数级增长,本文主要研究粒子群优化算法在Web数据挖掘中的应用,介绍了粒子群优化算法进行Web数据挖掘的基本原理,分析了其特点。简述了粒子群Web数据挖掘优化算法的原理、特点、参数设置与应用等,重点分析了粒子群优化算法中的惯性权值,加速因子的设置对算法基本性能的影响,给出了算法中的经验参数设置。 相似文献
8.
9.
粒子群算法邻域拓扑结构研究 总被引:1,自引:0,他引:1
杨道平 《中国高新技术企业评价》2009,(16):36-37
粒子群算法(PSO算法)是一种启发式全局优化技术。PSO的邻域拓扑结构是决定粒子群优化算法效果的一个很重要的因素,不同邻域拓扑结构的粒子群算法,效果差别很大。文章分析了邻域拓扑结构与PSO算法的关系,阐述了粒子群算法邻域拓扑结构研究现状,提出了未来可能的研究方向。 相似文献
10.
为提高粒子群算法(Particle Swarm Optimization,PSO)寻优的全局性能,文章在基本粒子群算法中引入混沌理论(Chaos)的Logistic映射,并将改进后的算法运用到汽车扭杆悬架弹簧的优化设计中。数值实验的结果表明,与传统PSO算法相比,改进后的算法具有更强的全局收敛性,与传统设计方法相比,使用本文算法设计出的汽车扭杆弹簧的变形势能要高出1.6%,有效地提高了其避振效果。 相似文献
11.
12.
13.
针对带时间窗的车辆路径问题,采用混合量子粒子群算法对该问题进行了求解,该算法将量子粒子群算法与模拟退火算法相结合.充分发挥量子粒子群算法全局寻优能力强以及模拟退火算法局部寻优能力强的特点,从而能有效地避免早熟。仿真结果表明,该算法不仅收敛速度快,而且还具有较高的求解质量。 相似文献
14.
惯性权重w的变化会影响粒子群优化算法的搜索能力,本文针对基本粒子群算法不能适应复杂的非线性优化搜索过程的问题,在其基础上提出了一种动态改变惯性权的自适应粒子群算法。该自适应算法引入了h来衡量算法的进化速度,引入s来衡量算法的粒子聚集度,并将其作为函数w的变量,使w与算法的运行状态相关,从而使算法具有动态自适应性。最后,本文引入了两个经典的测试函数对该PSO算法进行测试,结果表明该算法明显优于基本PSO算法。 相似文献
15.
16.
17.
采用粒子群优化算法对该问题进行求解,为了提高算法的求解性能,针对粒子群算法特点,提出了一种自适应的惯性权值来调整算法的搜索空间和一种自适应更新策略来动态地更新粒子的位置.最后通过经典的实例对本文提出的算法进行了检验,结果表明,该改进的粒子群算法在求解车间作业调度问题是有效的. 相似文献
18.
针对传统灰色预测模型GM(1,1)在预测增长较快的电力负荷时预测效果变差及数据离散度越大导致预测精度越差这一局限性,对传统灰色预测模型做进行改进。一方面,采用指数加权算子对原始数据序列进行处理,有效地减弱异常值的影响,强化了原始数据序列的大致趋势;另一方面,利用自适应粒子群优化算法与GM(1,1)模型相结合,优化GM(1,1)模型中的背景值,使其更合理,使原始信息得到更好的利用。 相似文献