首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43415篇
  免费   1214篇
  国内免费   6篇
财政金融   7251篇
工业经济   2944篇
计划管理   6602篇
经济学   8706篇
综合类   387篇
运输经济   236篇
旅游经济   657篇
贸易经济   6082篇
农业经济   1870篇
经济概况   5289篇
水利工程   4514篇
邮电经济   97篇
  2021年   295篇
  2020年   429篇
  2019年   605篇
  2018年   862篇
  2017年   832篇
  2016年   859篇
  2015年   609篇
  2014年   906篇
  2013年   4018篇
  2012年   1397篇
  2011年   1449篇
  2010年   1035篇
  2009年   1171篇
  2008年   1368篇
  2007年   1396篇
  2006年   1370篇
  2005年   1265篇
  2004年   1240篇
  2003年   917篇
  2002年   852篇
  2001年   836篇
  2000年   810篇
  1999年   756篇
  1998年   723篇
  1997年   688篇
  1996年   684篇
  1995年   622篇
  1994年   660篇
  1993年   687篇
  1992年   645篇
  1991年   688篇
  1990年   598篇
  1989年   534篇
  1988年   528篇
  1987年   519篇
  1986年   509篇
  1985年   792篇
  1984年   745篇
  1983年   737篇
  1982年   696篇
  1981年   626篇
  1980年   619篇
  1979年   634篇
  1978年   531篇
  1977年   494篇
  1976年   418篇
  1975年   379篇
  1974年   354篇
  1973年   346篇
  1972年   271篇
排序方式: 共有10000条查询结果,搜索用时 884 毫秒
991.
Microbial fuel cells (MFCS) can be used in wastewater treatment and to simultaneously produce electricity (renewable energy). MFC technology has already been applied successfully in lab-scale studies to treat domestic wastewater, focussing on organic matter removal and energy production. However, domestic wastewater also contains nitrogen that needs to be treated before being discharged. The goal of this paper is to assess simultaneous domestic wastewater treatment and energy production using an air-cathode MFC, paying special attention to nitrogen compound transformations. An air-cathode MFC was designed and run treating 1.39 L d(-1) of wastewater with an organic load rate of 7.2 kg COD m(-3) d(-1) (80% removal efficiency) and producing 1.42 W m(-3). In terms of nitrogen transformations, the study demonstrates that two different processes took place in the MFC: physical-chemical and biological. Nitrogen loss was observed increasing in line with the power produced. A low level of oxygen was present in the anodic compartment, and ammonium was oxidised to nitrite and nitrate.  相似文献   
992.
In sulfate-reducing reactors, it has been reported that the sulfate removal efficiency increases when the COD/SO4(2-) ratio is increased. The start-up of a down-flow fluidized bed reactor constitutes an important step to establish a microbial community in the biofilm able to survive under the operational bioreactor conditions in order to achieve effective removal of both sulfate and organic matter. In this work the influence of COD/SO4(2-) ratio and HRT in the development of a biofilm during reactor start-up (35 days) was studied. The reactor was inoculated with 1.6 g VSS/L of granular sludge, ground low density polyethylene was used as support material; the feed consisted of mineral medium at pH 5.5 containing 1 g COD/L (acetate:lactate, 70:30) and sodium sulfate. Four experiments were conducted at HRT of 1 or 2 days and COD/SO4(2-) ratio of 0.67 or 2.5. The results obtained indicated that a COD/SO4(2-) ratio of 2.5 and HRT 2 days allowed high sulfate and COD removal (66.1 and 69.8%, respectively), whereas maximum amount of attached biomass (1.9 g SVI/L support) and highest sulfate reducing biofilm activity (10.1 g COD-H2S/g VSS-d) was achieved at HRT of 1 day and at COD/sulfate ratios of 0.67 and 2.5, respectively, which suggests that suspended biomass also played a key role in the performance of the reactors.  相似文献   
993.
Perfluorinated compounds (PFCs) have attracted global concern due to their ubiquitous distribution and properties of persistence, bio accumulation and toxicity. The process of adsorption has been identified as an effective technique to remove PFCs in water. Different non ion-exchange polymeric adsorbents were tested with regard to their sorption kinetics and isotherms at low PFCs concentrations. Selected PFCs were perfluorobutanoic acid (PFBA), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA) and the tested polymers were three types of Dowex optopores (V-493, V503, and L493), Amberlite XAD-4, and Filtrasorb 400 (Granular Activated Carbon-GAC). We observed the selective adsorption of PFCs on synthetic polymers. For PFDA, Amberlite XAD-4 gave the Freundlich adsorption constant of 2,965 (microg PFCs/g sorbent)(microg PFCs/L)(-n), which was higher than that of GAC (121.89 (microg PFCs/g sorbent) (microg PFCS/L)(-n)). In the case of PFBA, GAC showed better performance (13.36) (microg PFCs/g sorbent) microg PFCS/L)(-n) than synthetic polymers (0.62-5.23) (microg PFCs/g sorbent) (microg PFCS/L)(-n). Adsorption kinetics of all adsorbents were well described (R2 = 0.85-1) by pseudo-second order kinetic model. Sorption capacity was influenced by initial PFCs concentration for all adsorbents. GAC reached the equilibrium concentration within 4 hours, Amberlite XAD 4 reached it within 10 hours and other polymers took more than 70 hours.  相似文献   
994.
Carbonate hydroxyapatite (CHAP) was synthesized from different precursors; synthetic (CaCO3 and Ca(OH)2) and natural (egg shell before and after calcinations at 900 degrees C) under different conditions and characterized by using TG/DTG analysis, X-ray powder diffraction (XRD) method and Fourier transform infrared (FT-IR) spectroscopy techniques. The results of these analyses indicate that the four powders present the same structure of hydroxyapatite. Furthermore the four powders obtained were used for the retention of lead. The results obtained indicated that all powders present high adsorption capacity for lead, but from environmental and economic views, the hydroxyapatite synthesized from eggshell no calcined (HA2) is most advantageous. The influence of different sorption parameters, such as: initial metal concentration, equilibration time, solution pH and sorbent dosage was studied and discussed.  相似文献   
995.
This work studies the performance of three commercial ceramic ultrafiltration membranes (ZrO(2)-TiO(2)) treating raw effluent from a textile industry. The effect of crossflow velocity at 3, 4 and 5 m s(-1) as well as membrane characteristics, such as molecular weight cut-off (30, 50 and 150 kDa), on process performance were studied. Experiments were carried out in concentration mode in order to observe the effect of volume reduction factor simultaneously. Results showed a combined influence of both crossflow velocity and molecular weight cut-off on flux performance. TOC and COD removals up to 70% and 84% respectively were reached. On the other hand, almost complete color (>97%) and turbidity (>99%) removals were achieved for all the membranes and operating conditions.  相似文献   
996.
A new type of hybrid constructed wetland (CW), consisting of both vertical-baffled flow wetland (VBFW) and horizontal subsurface flow wetland (HSFW), has been deployed in Southern China to naturally accelerate the removal of organic matter and nitrogen. The hybrid CW system is characterised by a combination of continuous baffled flow vertical wetland and 'S' pattern horizontal subsurface flow wetland with natural aeration ditches to increase the concentration of dissolved oxygen in the HSFW bed. An internal circulatory system from the HSFW effluent back to the VBFW may optionally be operated to enhance the biological denitrification effect. Cyperus alternifolius is the main macrophyte in the wetland bed. The performance of the hybrid CW was studied with a pilot-scale system and three full-scale systems for municipal sewage treatment in Southern China. The results suggest that this new hybrid CW can achieve removal efficiencies of chemical oxygen demand, suspended solids, ammonia nitrogen, total nitrogen, and total phosphorus of better than 83.6, 95.0, 71.7, 64.5 and 68.1% respectively, with a specific wetland bed area of 0.70-0.93 m(2) PE(-1). The mean effluent concentrations of these parameters would meet the regulatory discharge limits for wastewater treatment systems (GB18918, 2002) and reuse in the context of agricultural irrigation solutions in China.  相似文献   
997.
Efforts to control eutrophication of water resources in agriculturally dominated ecosystems have focused on managing on-farm activities to reduce nutrient loss; however, another management measure for improving water quality is adoption of environmental performance criteria (or 'outcome-based standards'). Here, we review approaches for setting environmental quality criteria for nutrients, summarize approaches developed in Canada for setting 'ideal' and 'achievable' nutrient criteria for streams in agricultural watersheds, and consider how such criteria could be applied. As part of a 'National Agri-Environmental Standards Initiative', the Government of Canada committed to the development of non-regulatory environmental performance standards that establish total P (TP) and total N (TN) concentrations to protect ecological condition of agricultural streams. Application of four approaches for defining ideal standards using only chemistry data resulted in values for TP and TN spanning a relatively narrow range of concentrations within a given ecoregion. Cross-calibration of these chemically derived standards with information on biological condition resulted in recommendations for TP and TN that would likely protect aquatic life from adverse effects of eutrophication. Non-point source water quality modelling was then conducted in a specific watershed to estimate achievable standards, i.e. chemical conditions that could be attained using currently available and recommended management practices. Our research showed that, taken together, short-term achievable standards and ultimate ideal standards could be used to set policy targets that should, if realized, lower N and P concentrations in Canadian agricultural streams and improve biotic condition.  相似文献   
998.
This study investigated the microbial community developed in a UASB reactor for hydrogen production and correlated it to reactor performance. The reactor was inoculated with kitchen waste compost and fed with raw cheese whey at two organic loading rates, 20 gCOD/Ld and 30 gCOD/Ld. Hydrogen production was very variable, using an OLR of 30 gCOD/Ld averaged 1.0 LH(2)/Ld with no methane produced under these conditions. The hydrogen yield was also very variable and far from the theoretical. This low yield could be explained by selection of a mixed fermentative population with presence of hydrogen producing organisms (Clostridium, Ruminococcus and Enterobacter) and other non-hydrogen producing fermenters (Lactobacillus, Dialister and Prevotella). The molecular analysis of the raw cheese whey used for feeding revealed the presence of three predominant organisms that are affiliated with the genera Buttiauxella (a low-yield hydrogen producer) and Streptococcus (a lactic acid-producing fermenter). Although these organisms did not persist in the reactor, the continuous addition of these fermenters could decrease the reactor's hydrogen yield.  相似文献   
999.
The aim of this project was to investigate the potential of reducing number of mixers in the biological treatment process and thereby achieve energy and economical savings and contribute to cleaner environment. The project was carried out at Avedoere wastewater treatment plant and a full scale investigation was conducted to study the effect of reduced mixing on flow velocity, suspended solid sedimentation, concentration gradients of oxygen and SS with depth and treatment efficiency. The only negative effect observed was on flow velocity; however the velocity was above the critical velocity. The plant has been operating with 50% of its designed number of mixers since September 2007 and long term results also confirm that reduced mixing did not have any negative effect on treatment efficiency. The estimated yearly electricity saving is 0.75 GWh/year.  相似文献   
1000.
Influence of membrane material and pore size on the performance of a submerged membrane bioreactor (sMBR) for oily wastewater treatment was investigated. The sMBR had a working volume of about 19 L with flat sheet modules at the same hydrodynamic conditions. Five types of micro- and ultra-polymeric membranes containing cellulose acetate (CA), cellulose nitrate (CN), polyamide (PA), polyvinylidene difluoride (PVDF) and polyethersulfone (PES) were used and their filtration performance in terms of permeability, permeate quality and fouling intensity were evaluated. Characterization of the membranes was done by performing some analysis such as pore size distribution; contact angle and scanning electronic microscopy (SEM) microphotograph on all membranes. The quality of permeates from each membrane was identified by measuring chemical oxygen demand (COD). The results showed more irreversible fouling intensity for membranes with larger pore size which can be due to more permeation of bioparticles and colloids inside the pores. Membrane characteristics have a major role in the preliminary time of the filtration before cake layer formation so that the PA with the highest hydrophilicity had the lowest permeability decline by fouling in this period. Also, the PVDF and PES membranes had better performance according to better permeate quality in the preliminary time of the filtration related to smaller pore size and also their better fouling resistance and chemical stability properties. However, all membranes resulted in the same permeability and permeate quality after cake layer formation. An overall efficiency of about 95% in COD removal was obtained for oily wastewater treatment by the membranes used in this study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号