全文获取类型
收费全文 | 700篇 |
免费 | 21篇 |
专业分类
财政金融 | 81篇 |
工业经济 | 36篇 |
计划管理 | 173篇 |
经济学 | 82篇 |
综合类 | 47篇 |
运输经济 | 7篇 |
旅游经济 | 8篇 |
贸易经济 | 237篇 |
农业经济 | 13篇 |
经济概况 | 37篇 |
出版年
2025年 | 1篇 |
2024年 | 5篇 |
2023年 | 8篇 |
2022年 | 8篇 |
2021年 | 12篇 |
2020年 | 25篇 |
2019年 | 19篇 |
2018年 | 25篇 |
2017年 | 20篇 |
2016年 | 29篇 |
2015年 | 28篇 |
2014年 | 47篇 |
2013年 | 53篇 |
2012年 | 60篇 |
2011年 | 54篇 |
2010年 | 38篇 |
2009年 | 29篇 |
2008年 | 43篇 |
2007年 | 49篇 |
2006年 | 34篇 |
2005年 | 33篇 |
2004年 | 19篇 |
2003年 | 22篇 |
2002年 | 11篇 |
2001年 | 10篇 |
2000年 | 7篇 |
1999年 | 10篇 |
1998年 | 2篇 |
1997年 | 8篇 |
1996年 | 3篇 |
1995年 | 1篇 |
1993年 | 1篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1989年 | 1篇 |
1988年 | 2篇 |
1986年 | 1篇 |
排序方式: 共有721条查询结果,搜索用时 15 毫秒
121.
介绍了不对称槽线的特性,分析了以不对称槽线构建的复合环、支线定向耦合器、平衡功率分配器、多层滤波器、多信道功率分配器等组件的性能。这些组件体积小、重量轻、频带宽、电压驻波系数小,并且大多数可应用于毫米波段,是三维微波集成电路中的重要组成部分。研究表明不对称槽线具有优良的特性。 相似文献
122.
本文提出了一种对调频信号进行数字解调的方法。该方法利用DDS产生的数字正交载波将调频信号进行数字下变频,利用FIR抽取滤波器和数字微分器在基带进行信号处理,从而得到调制信号。仿真结果显示,该方法在较低信噪比环境下能够准确地恢复调制信号。 相似文献
123.
针对当前高速率通信中信道阶数很长导致信道估计和均衡困难的问题,利用子带滤波器组近似完全重构的特点,提出一种在子带内进行分频段信道估计、在全频带综合信道参数的估计方法。该方法较全频带信道估计收敛速度快,收敛误差小,能很好适应恶劣的信道情况。虽然总的计算量大于全频带信道估计,但由于采用并行计算,所以能大大减少运算时间。仿真试验表明,在重构误差足够小的情况下,子带数目越多,收敛越快,收敛残差比全频带信道估计小5 dB左右。 相似文献
124.
125.
126.
[目的]根据粮食产量波动特征,从自然因素、科技因素(物质装备)、社会经济因素和农业生产条件等方面对粮食产量的影响进行量化分析,为科学合理地制定农业政策,保障我国粮食安全提供理论依据。[方法]文章利用HP滤波法分析1978—2010年我国粮食产量波动特征,并采用灰色关联与层析分析相结合的综合评价法定量分析不同波动周期各影响因子对我国粮食产量波动的影响度。[结果](1)改革开放以来,我国粮食产量经历了完整的6个波动阶段,平均波动周期为6年;(2)除1994—2000年,各波动周期的粮食产量受科技因素的影响最大,且影响日益显著,影响度从1978—1981年的37. 0%增加到2006—2010年的48. 3%,其中,有效灌溉面积的影响增大趋势最为明显,其次是农业机械总动力,化肥施用量的影响呈减弱趋势;(3)社会经济因素对粮食产量的影响呈波动性增加的规律,2006—2010年影响度达到24. 9%;(4)农业生产条件对粮食产量的影响在20世纪80年代初期与科技因素基本持平,此后,除1994—2000年,与科技因素的影响度差距越来越大,到2000—2006年对粮食产量的影响度仅为16. 6%,其中,耕地面积的影响度下降最多,到2006—2010年,影响度仅为1. 1%;自然因素对粮食产量波动的影响最小,且较为稳定,除1985—1988年影响度达到24. 3%,其余波动周期均在8. 7%~12. 4%之间,2006—2010年影响度为10. 2%。[结论]完善农田水利灌溉体系,加强对农业机械指导的\"重科技\"举措比单纯增加后备耕地数量、改善应对气候变化与自然灾害能力的\"靠资源\"发展更为有效;加大农田水利投入,完成灌区续建配套与灌排泵站更新改造是目前最重要的发展方向。 相似文献
127.
Marco Realdon 《Quantitative Finance》2019,19(2):191-210
Prior literature indicates that quadratic models and the Black–Karasinski model are very promising for CDS pricing. This paper extends these models and the Black [J. Finance 1995, 50, 1371–1376] model for pricing sovereign CDS’s. For all 10 sovereigns in the sample quadratic models best fit CDS spreads in-sample, and a four factor quadratic model can account for the joint effects on CDS spreads of default risk, default loss risk and liquidity risk with no restriction to factors correlation. Liquidity risk appears to affect sovereign CDS spreads. However, quadratic models tend to over-fit some CDS maturities at the expense of other maturities, while the BK model is particularly immune from this tendency. The Black model seems preferable because its out-of-sample performance in the time series dimension is the best. 相似文献
128.
129.
130.