首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1944篇
  免费   189篇
  国内免费   40篇
财政金融   10篇
工业经济   4篇
计划管理   43篇
经济学   118篇
综合类   34篇
运输经济   2篇
旅游经济   18篇
贸易经济   12篇
农业经济   119篇
经济概况   42篇
水利工程   1771篇
  2024年   9篇
  2023年   59篇
  2022年   95篇
  2021年   123篇
  2020年   142篇
  2019年   99篇
  2018年   126篇
  2017年   69篇
  2016年   79篇
  2015年   71篇
  2014年   109篇
  2013年   110篇
  2012年   151篇
  2011年   173篇
  2010年   109篇
  2009年   99篇
  2008年   97篇
  2007年   101篇
  2006年   62篇
  2005年   56篇
  2004年   43篇
  2003年   30篇
  2002年   32篇
  2001年   29篇
  2000年   11篇
  1999年   10篇
  1998年   8篇
  1997年   4篇
  1996年   11篇
  1995年   10篇
  1994年   4篇
  1993年   4篇
  1992年   4篇
  1989年   4篇
  1987年   1篇
  1985年   5篇
  1984年   11篇
  1983年   9篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
排序方式: 共有2173条查询结果,搜索用时 15 毫秒
21.
The status of invasive dreissenid mussels (Dreissena polymorpha and D. bugensis) and native amphipods (Diporeia spp.) in Lake Ontario was assessed in 2003 and compared with historical data. D. polymorpha (zebra mussels) were rarely observed in 2003, having been displaced by D. bugensis (quagga mussels). D. bugensis expanded its depth range from 38 m depth in 1995 to 174 m in 2003 and this dreissenid reached densities averaging 8,000/m2 at all sites < 90 m. During the same time period, Diporeia populations almost completely disappeared from 0–90 m depth, continuing a declining trend from 1994–1997 reported in previous studies. The average density of Diporeia in the 30–90 m depth interval decreased from 1,380/m2 to 63/m2 between 1997 and 2003. Prior to 2003, areas deeper than 90 m represented a refuge for Diporeia, but even these deep populations decreased, with densities declining from 2,181/m2 in 1999 to 545/m2 in 2003. Two common hypotheses for the decline of Diporeia in the Great Lakes are food limitation and a toxin/pathogen associated with dreissenid pseudofeces. The Diporeia decline in deep waters preceded the expansion of D. bugensis to these depths, and suggests that shallow dreissenid populations remotely influence profundal habitats. This pattern of decline is consistent with mechanisms that act from some distance including nearshore dreissenid grazing and downslope transport of pseudofeces.  相似文献   
22.
Lake Erie's food web has been dramatically modified by exotic species. Both exotic dreissenid mussels and the round goby Neogobius melanastomus have shifted the food web from a pelagicbased to a benthic-based one, potentially creating a new pathway for contaminant transfer to top predators. Before the invasion of round gobies, few predators of dreissenids occurred in Lake Erie, allowing contaminants to be confined to these benthic organisms. The invasion of the round goby has produced a new pathway through which these contaminants can enter the food web. To characterize heavy-metal transfer through this new food web and to assess risk to humans, water, surficial sediment, dreissenid, round goby, and smallmouth bass Micropterus dolomieui samples were collected at three sites during summers, 2002 and 2003, and analyzed for total lead (Pb), total mercury (Hg), and methyl mercury (MeHg). In addition, we compared smallmouth bass Pb and Hg concentrations to those measured in 1993/1994, before round gobies were prevalent. Pb biodiminished and MeHg biomagnified through the food web to smallmouth bass; patterns were similar among our three sites. Total Pb concentrations in smallmouth bass were higher before the incorporation of round gobies into their diet. We attributed this decline to changes in food web structure, changes in contaminant burdens in prey, or declines in sediment Pb concentrations in Lake Erie. By comparison, Hg concentrations in smallmouth bass changed little, before and after the round goby invasion, possibly due to a shift in diet that increased growth. Despite a decline in sediment Hg concentrations in Lake Erie, smallmouth bass continued to accumulate Hg at historical rates possibly because of their high consumption rates of benthivorous round gobies. As smallmouth bass continue to consume round gobies during their lives, their Hg concentrations may well continue to increase, potentially increasing the risk of Hg contamination to humans.  相似文献   
23.
Violet and purple bacterial pigmentations are uncommon when considering strict aerobes. Here we report discovery of two novel isolates, P102 and P117 from the freshwater Lake Winnipeg, each with violet to deep purple colony colouration. The relationship between pigment production and growth was investigated under different conditions, including a variety of carbon sources, pH, and temperatures. The violet compounds were purified using polar organic solvents, and then structurally characterized via mass spectrometry and nuclear magnetic resonance to be violacein and deoxyviolacein. Strain P117 produced higher concentrations of the darker pigment deoxyviolacein, which resulted in a deeper hue of violet than in cultures of P102. Strain P102, synthesized violacein maximally in liquid rich organic medium at pH 8 and 20 °C, and had 99.3% sequence similarity to the 16S rDNA from Janthinobacterium lividum. Strain P117, related to Massilia violaceinigra sharing 99.2% 16S rDNA sequence similarity, also produced violacein at similar optimal conditions, but developed higher concentrations of pigment at 15 °C. Culture-based methods found that violacein producers composed 0.001% or 0.023% CFU of environmental heterotrophic populations using BG-11 and potato-based media, respectively. Culture-independent high-throughput ribosomal 16S V4 sequencing of environmental DNA was used to detect Gram-negative species known for their production of violacein. Of all bacterial and archaeal sequences present during the fall in littoral waters and sediment of Lake Winnipeg, 5.5% and 6.3%, respectively, belonged to species that have similar pigment, demonstrating the scarcity of violacein producers in this aquatic freshwater system.  相似文献   
24.
This study assesses snow response in the Assiniboine-Red River basin, located in the Lake Winnipeg watershed, due to anthropogenic climate change. We use a process-based distributed snow model driven by an ensemble of eight statistically downscaled global climate models (GCMs) to project future changes under policy-relevant global mean temperature (GMT) increases of 1.0 °C to 3.0 °C above the pre-industrial period. Results indicate that basin scale seasonal warmings generally exceed the GMT increases, with greater warming in winter months. The majority of GCMs project wetter winters and springs, and drier summers, while autumn could become either drier or wetter. An analysis of snow water equivalent (SWE) responses under GMT changes reveal higher correlations of snow cover duration (SCD), snowmelt rate, maximum SWE (SWEmax) and timing of SWEmax with winter and spring temperatures compared to precipitation, implying that these variables are predominantly temperature controlled. Consequently, under the GMT increases from 1.0 °C to 3.0 °C, the basin will experience successively shorter SCD, slower snowmelt, smaller monthly SWE and SWEmax, earlier SWEmax, and a transition from snow-dominated to rain-snow hybrid regime. Further, while the winter precipitation increases for some GCMs compensate the temperature-driven changes in SWE, the increases for most GCMs occur as rainfall, thus limiting the positive contribution to snow storage. Overall, this study provides a detailed diagnosis of the snow regime changes under the policy-relevant GMT changes, and a basis for further investigations on water quantity and quality changes.  相似文献   
25.
Eutrophication of Lake Victoria led to changes in its phytoplankton communities. However, different levels of eutrophication exist in the open lake and the bays, and between embayments. This study utilized spatial and temporal sampling of Napoleon Gulf and Murchison Bay, exhibiting different trophic conditions. Over one year, we investigated phytoplankton biomass, richness, diversity and dissimilarity, and related the dynamics of the dominant species to the limnological and climatic conditions. The results confirmed that Napoleon Gulf and Murchison Bay showed large differences in eutrophication status, with lower nutrient concentrations in Napoleon Gulf than in Murchison Bay, where a strong gradient was observed from inshore to offshore areas. These nutrient dynamics resulted in a 4 to 10 fold higher chlorophyll-a in Murchison Bay than in Napoleon Gulf. From the embayments, 135 phytoplankton taxa were recorded with no significant differences in alpha diversity. However, high dissimilarity in community structure was observed in beta diversity, mostly due to a turnover among the dominant toxigenic species. Thus, from a similar species pool, there was a shift in the dominant toxigenic cyanobacteria from Microcystis flos-aquae and M. aeruginosa in Murchison Bay, Dolichospermum circinale and Planktolyngbya circumcreta in Napoleon Gulf to D. circinale in the offshore stations. These cyanobacteria are toxigenic taxa with known health hazards. Using partial least square models, we showed that both climatic variables (e.g. wind, solar radiation) and levels of inorganic dissolved nutrients (e.g. SRP, NO3, and NH4+) are the main drivers of differences and dominance in cyanobacteria communities in northern Lake Victoria.  相似文献   
26.
On Great Lakes dunes, the link between foredune dynamics and coastal processes is seen in dune responses to changing lake levels. This paper investigates foredune dynamics during a recent period of rising and high lake levels. The study location was an active foredune in P.J. Hoffmaster State Park on the east coast of Lake Michigan, where field data were collected from 2000 through the final destruction of the foredune by wave removal in November 2019. Foredune dynamics were studied with erosion pins, direct observations, photographs, mapping, and on-site wind measurements. Regional climate and lake-level data were obtained from established data collection programs. The response of the foredune to rising lake levels was compared to several models of foredune behavior. During the study, the Lake Michigan-Huron level rose 1.89 m from January 2013 to July 2020. After an early transitional period, foredune activity was characterized by scarp retreat (4–19 m per year) and dune narrowing from 2014 to 2019. When the foredune completely disappeared in November 2019, erosion/scarping began on the next landward dune. The foredune activity fits Olson’s (1958) model for foredune growth and erosion through lake-level cycles. The foredune migration predicted by the revised Davidson-Arnott (2021) model of foredune response to relative water level rise did not occur, most likely because the rate of lake-level rise was too high. The six years of foredune narrowing before wave erosion started affecting the next landward dune represent a time-lag in Lake Michigan dune history models of increased dune activity during high lake-level stands.  相似文献   
27.
Natural reproduction of salmonids occurs in many Lake Michigan tributaries, yet little is known about abundance and the potential contribution of wild fish hatching in Wisconsin tributaries. The objectives of our study were to determine if: 1) abundance of wild juvenile salmonids (primarily adfluvial rainbow trout, Oncorhynchus mykiss, referred to as steelhead) varied among selected Wisconsin streams based on available spawning and age-0 habitat; 2) stream temperature regimes could limit survival of juvenile salmonids, and 3) wild juvenile salmonids outmigrate from Wisconsin tributaries into Lake Michigan or larger tributaries. In 2016 and 2017, juvenile salmonid abundance was estimated in six Wisconsin tributaries to Lake Michigan by multiple-pass depletion sampling using backpack electrofishing. Habitat assessments included steelhead redd surveys, age-0 habitat surveys, and stream temperatures were monitored using in-stream loggers. Passive integrated transponder (PIT) tagging and PIT antennas were used to detect outmigration from three streams (Willow, Stony and Hibbard creeks). Population estimates for individual streams ranged from 75 to 2276 for juvenile steelhead and from 0 to 243 for juvenile coho salmon, Oncorhynchus kisutch. No correlation was detected between juvenile steelhead abundance and quality age-0 habitat. Stream temperatures rarely exceeded the thermal limit for steelhead (27 °C). Outmigration rates for three streams ranged from 0.6% to 3.1%, but these estimates were considered minimum values. Low abundance of wild juvenile steelhead and coho salmon alone suggest that the contributions of these tributaries to Lake Michigan fisheries are likely small. Furthermore, relying on returns of wild steelhead produced in these streams is probably insufficient to maintain stream fisheries.  相似文献   
28.
29.
30.
大通湖是洞庭湖区的重要组成部分,近年其水质状况呈现恶化态势,正通过实施水系连通工程,以期改善其水环境。基于MIKE21构建大通湖区水系连通工程的二维水动力-水质数学模型,选取总氮和总磷作为水质指标,模拟不同连通调度方案下大通湖的氮磷浓度变化,采用滞水区面积比例、浓度变化指数、换水率和水质浓度改善率,评估6个连通方案下大通湖水环境的改善效果。结果表明:通过实施引水调度方案能够有效改善大通湖水环境,当引水前期流量取30 m~3/s,出口水位控制在25.48 m时和引水后期流量保持为30 m~3/s不变,出口水位调整至25.88 m时,大通湖水环境改善效果最佳。本研究可为实施水系连通工程,改善类似湖泊水环境和提高引水调度效率提供参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号