首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1322篇
  免费   227篇
  国内免费   65篇
财政金融   3篇
工业经济   6篇
计划管理   33篇
经济学   53篇
综合类   34篇
运输经济   1篇
旅游经济   4篇
贸易经济   19篇
农业经济   77篇
经济概况   36篇
水利工程   1348篇
  2024年   5篇
  2023年   31篇
  2022年   39篇
  2021年   56篇
  2020年   67篇
  2019年   68篇
  2018年   56篇
  2017年   58篇
  2016年   115篇
  2015年   65篇
  2014年   69篇
  2013年   74篇
  2012年   112篇
  2011年   98篇
  2010年   50篇
  2009年   74篇
  2008年   68篇
  2007年   79篇
  2006年   81篇
  2005年   62篇
  2004年   38篇
  2003年   45篇
  2002年   45篇
  2001年   41篇
  2000年   24篇
  1999年   12篇
  1998年   8篇
  1997年   9篇
  1996年   7篇
  1995年   14篇
  1994年   4篇
  1993年   5篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   10篇
  1988年   1篇
  1987年   3篇
  1985年   4篇
  1984年   2篇
  1983年   5篇
  1982年   4篇
排序方式: 共有1614条查询结果,搜索用时 793 毫秒
1.
在总结水利规划工作经验教训的基础上,结合松辽流域现在水利工作实际,进行了水利规划及战略研究工作,提出切实可行的解决途径,并着重阐述了松辽流域水利规划和战略研究的总体思路.  相似文献   
2.
Guatavita Lake is a small, sheltered tropical high mountain lake located in the Colombian Andes, with a closed watershed and a maximum depth of 25 m. It is the freshwater source for human consumption in nearby small towns, as well as being a site of cultural value for the country, as it was a sacred place to indigenous peoples until about five centuries ago. As the structure and function of this aquatic ecosystem is poorly understood, this study provides initial knowledge on its phytoplankton biomass dynamics, which should be useful in designing efficient management plans with environmental baseline information for similar lakes elsewhere. Physical and chemical data, and photosynthetic pigment concentrations, were measured for the period November 1999–November 2000 at the central vertical axis of Guatavita Lake. The vertical profile of the chlorophyll‐a concentration was closely related to the dissolved inorganic nitrogen concentrations and the thermal stratification characteristics. The maximum chlorophyll‐a concentration in the metalimnion was recorded for the thermal stratification period (November 1999–June 2000). Deepening of the maximum chlorophyll‐a concentration began in February, continuing to June, when it reached its lowest value at the 15 m depth. The phytoplankton biomass values showed an increment within the entire water column at the beginning of the mixing period (July). The relation between the metalimnetic peak of chlorophyll‐a and the dissolved inorganic nitrogen concentration suggests the growth of the phytoplankton community is limited mainly by the availability of nitrogen.  相似文献   
3.
Lake Qinghai, the largest saline lake with an area of 4,260 km2 (2000) and average depth of 21 m (1985) in West China, has experienced severe decline in water level in recent decades. This study aimed to investigate water balance of the lake and identify the causes for the decline in lake level. There was a 3.35-m decline in water level with an average decreasing rate of 8.0 cm year−1 between 1959 and 2000. The lake water balance showed that mean annual precipitation between 1959 and 2000 over the lake was 357 ± 10 mm, evaporation was 924 ± 10 mm, surface runoff water inflow was 348 ± 21 mm, groundwater inflow was 138 mm ± 9 and the change in lake level was −80 ± 31 mm. The variation of lake level was highly positively correlated to surface runoff and precipitation and negatively to evaporation, the correlation coefficients were 0.89, 0.81 and −0.66, respectively. Water consumption by human activities accounts for 1% of the evaporation loss of the lake, implying that water consumption by human activities has little effect on lake level decline. Most dramatic decline in lake level occurred in the warm and dry years, and moderate decline in the cold and dry years, and relatively slight decline in the warm and wet years, therefore, the trend of cold/warm and dry climate in recent decades may be the main reasons for the decline in lake level.  相似文献   
4.
Spectral slope (S), describing the exponential decrease of the absorption spectrum over a given wavelength range, is an important parameter in the study of of chromophoric dissolved organic matter (CDOM) dynamics, and also an essential input parameter in remote sensing models. Furthermore, S is often used as a proxy for CDOM composition, including the ratio of fulvic to humic acids and molecular weight. The relative broad range in S values reported in the literature can be explained by the different spectral ranges and fitting methods used. A single exponential model is used to fit the S values for 17 investigations involving 458 samples in Lake Taihu from January to October in 2004. The average S value was 15.18 ± 1.39 μm−1 for the range of 280–500 nm, which fell within the range reported in the literature. The frequency distribution of S value basically obeyed a normal distribution. Significant differences in S values between summer and other seasons showed that phytoplankton degradation was one of the important sources of CDOM in summer, whereas CDOM mainly came from the river input in other seasons. Furthermore, the estimated S value decreased with increasing wavelength range used in regression. The maximum and minimum values derived from the regression were 17.89 ± 1.25 μm−1 and 13.62 ± 2.11 μm−1 for the wavelength ranges of 280–380 nm and 400–500 nm, respectively, a decrease of 23.9%. S values significantly decreased with the increase of CDOM absorption coefficients. CDOM absorption coefficients could be more appropriately estimated from exponential model introducing the variation of S with absorption coefficients, making them useful for a remote sensing bio-optical model of Lake Taihu. DOC-specific absorption coefficient a*(λ) and the parameter M describing molecular size of the humic molecules could also be used as a proxy for the sources and types of CDOM. A general relationship was found between S and a*(λ), and M values. S increased with the decrease of DOC-specific absorption coefficient and the increase of M corresponding to the decrease of molecular weight.  相似文献   
5.
穆棱河流域面源污染入河量调查和估算采用了MIKEII软件系统,根据水质、水量实测数据,在参数率定和模型验证的基础上.对穆棱河部分河段的水质进行模拟,拟合出面源入河量和年内分布。经验证计算结果较其他方法更合理可靠。  相似文献   
6.
Alewives (Alosa pseudoharengus), the major prey fish for Lake Ontario, contain thiaminase. They are associated with development of a thiamine deficiency in salmonines which greatly increases the potential for developing an early mortality syndrome (EMS). To assess the possible effects of thiamine deficiency on salmonine reproduction we measured egg thiamine concentrations for five species of Lake Ontario salmonines. From this we estimated the proportion of families susceptible to EMS based on whether they were below the ED20, the egg thiamine concentration associated with 20% mortality due to EMS. The ED20s were 1.52, 2.63, and 2.99 nmol/g egg for Chinook salmon (Oncorhynchus tshawytscha), lake trout (Salvelinus namaycush), and coho salmon (Oncorhynchus kisutch), respectively. Based on the proportion of fish having egg thiamine concentrations falling below the ED20, the risk of developing EMS in Lake Ontario was highest for lake trout, followed by coho (O. kisutch), and Chinook salmon, with the least risk for rainbow trout (O. mykiss). For lake trout from western Lake Ontario, mean egg thiamine concentration showed significant annual variability during 1994 to 2003, when the proportion of lake trout at risk of developing EMS based on ED20 ranged between 77 and 100%. Variation in the annual mean egg thiamine concentration for western Lake Ontario lake trout was positively related (p < 0.001, r2 = 0.94) with indices of annual adult alewife biomass. While suggesting the possible involvement of density-dependent changes in alewives, the changes are small relative to egg thiamine concentrations when alewife are not part of the diet and are of insufficient magnitude to allow for natural reproduction by lake trout.  相似文献   
7.
Floodplain waterbodies are reputed to enhance recruitment of riverine fish populations via provision of spawning and nursery habitat, refuge from floods, and increased availability of planktonic food resources compared with main river channels. Notwithstanding, there have been few parallel studies of fishes and their food resources at both main river and floodplain sites. Thus, this study investigated the 0+ fishes, zooplankton and phytoplankton (chlorophyll a) at four main river and four (man‐made) floodplain sites on the lower River Trent, England, between May 1999 and October 2004 inclusive. All sites shared the same key fish species, and there were no consistent differences in the densities, growth or condition of 0+ fishes from main river and floodplain sites. Similarly, all sites shared the same key zooplankton taxa. However, zooplankton densities, notably of large‐bodied cladocerans, and chlorophyll a concentrations, were significantly higher at floodplain sites than at main river sites. Thus, connection of man‐made waterbodies has the potential to enhance recruitment of riverine fish populations via provision of important spawning and nursery habitat, and superior feeding opportunities for 0+ fishes compared with main river channels. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
8.
Lake Rupa is a small, subtropical, shallow lake with a surface area of 100 ha situated 600 m a.s.l. in Central Himalaya, Nepal. This degraded lake was studied between 2000 and 2006, with the goal of determining whether or not it could be restored by a community‐based cooperative of local people living in its catchment. Main threats to the lake, its aquatic life and its very existence include encroachment by excessive aquatic vegetation, sedimentation, and low in‐lake concentrations of dissolved oxygen (DO). Small lakes (≤ 500 ha) are relatively prone to the process of ‘succession and climax’, although they also can be of social, environmental and ecological importance. Thus, their disappearance could spark social chaos and disorder in areas already having to cope with other rapid environmental changes. This means that credible mechanisms for revitalizing or protecting small lakes are an important goal. Accordingly, a lake cooperative of 329 households living in close vicinity to Lake Rupa was formed in 2002, by prioritizing traditional fishers, women and other deprived community members with the goals of respecting the citizenry and equity. Following the cooperative's campaigns directed at weed removal and fish stocking, encroachment of vegetation on the lake margins was halted, its aquatic weeds became under control, and its fisheries improved. In addition to the cooperative's restoration activities, several water quality parameters, including water transparency and DO and chlorophyll‐a concentrations, were monitored on a monthly basis. The measured water transparency was inconsistent, exhibiting large variations between 2000 and 2003. Relatively low, but consistent, values, however, were measured after 2004. The results imply that the removal of weeds, and sufficient nutrients and solar radiation are subsequently available to the lake's phytoplankton communities. Supporting this notion is that the chlorophyll‐a concentration spiked to 205 µg L−1 in November 2006, the water transparency became consistent, and the DO concentration increased to >3.8 mg L−1 during the critical months (March–May) after 2004. These water quality indicators indicated improvement in the degraded Lake Rupa, suggesting that the establishment of cooperatives such as that highlighted in this study could be a powerful and sustainable mechanism for restoring degraded lakes in similar socioeconomic settings by maintaining equity, by connecting communities with their resources, and by facilitating integrity, equity, citizenry and social justice.  相似文献   
9.
Critical to restoring the nature conservation value of many river corridors is an understanding of how alluvial landscapes will respond to cessation of river management and land use practices that have previously degraded the environment. This paper analyses changes in valley floor landforms and vegetation patch dynamics, in relation to fluvial disturbance, over a period of almost 100 years following flood embankment abandonment on a wandering gravel‐bed river, namely the River Tummel, Scotland. Such rivers were once typical of many draining upland areas of northern maritime Europe. Prior to abandonment the valley floor landscape was agriculturally dominated and the river for the most part was single thread confined between flood embankments. The pattern of landform change and vegetation patch development over time following a decision in 1903 not to maintain embankments was tracked by geomorphic and land cover mapping utilizing successive sets of aerial photography for the period 1946 to 1994. A historical context for these changes was also feasible because the channel planform in 1900 and earlier channel planform changes dating back to 1753 were known due to the availability of old maps and earlier geomorphic studies. The land cover mapping was validated by comparison of results produced from the interpretation work on the 1994 aerial photographs with the field‐based UK National Vegetation Classification protocol. The findings of the study illustrate that bordering the River Tummel fluvial landforms and vegetation patch mosaics, presumably resembling those that occurred before valley floor land use intensification, evolved in less than 50 years after flood embankment abandonment with a resultant increase in habitat diversity. The change relates primarily to flood‐induced channel planform change and moderate levels of fluvial disturbance. The general significance of this change to plant species diversity on the valley floor of the River Tummel and elsewhere is discussed as is possible implications of the upstream impoundment and scenarios for climatically induced changes in flood frequency and magnitude. The overall outcome is the strong possibility that simple changes in river management and land use practices could result in re‐establishment of the nature conservation value of similar river corridors in Europe over the medium term without active restoration efforts. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
10.
Periodic man-made changes in the outlet of Lake Huron through the St. Clair River date back to the middle of the last century. These artificial channel changes have been well documented during the present century. They consist of dredging for commercial gravel removal in the upper river during 1908–25 and uncompensated navigation improvements for the 7.6-m (25-ft) and 8.2-m (27-ft) projects completed in 1933 and 1962, respectively. The total effect of these changes on the levels of Lakes Michigan and Huron (hydraulically one lake) and on the upper St. Clair River profile was determined with dynamic flow models. The ultimate effect of the above dredging was a permanent lowering of the Lake Michigan-Huron levels 0.27 m (0.89 ft), which represents a tremendous loss of freshwater resource [32 km3 (7.7 mi3)].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号