首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
水利工程   3篇
  2019年   1篇
  2018年   1篇
  2007年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
The Tonle Sap River (TSR) serves as a natural medium for the reversal flow between Tonle Sap Lake (TSL) and the Mekong River to sustain productivity and biodiversity in the TSR floodplain and TSL. Understanding the hydrological connectivity and its dynamics in the TSR, including its floodplain, is therefore important to support activities that aim to maintain ecological services in the TSR–TSL system. Thus, the main objective of this study is to examine the hydrological connectivity of the TSR and its floodplain by a modelling approach that integrates inundation patterns and sediment dynamics. The Caesar–Lisflood model was applied to describe inundation, sediment erosion, transport, and deposition in the TSR for the period of 2003–2013. The inundation areas connected to the TSR ranged from 140 to 2,327 km2, whereas the isolated inundation areas from the TSR ranged from 0.27 to 504 km2. Sediment dynamics showed its influence on inundation patterns and hydrological connectivity and could alter the yearly inundation ratio (defined as a normalized inundation frequency with a value ranging from 0 to 1) up to 0.8. Our approach provides a quantitative way to determine key factors (e.g., total inundation areas, seasonality, and connectivity of inundation patterns) for further investigation of ecological processes in relation to the inundation patterns and sediment dynamics in the TSR and TSL.  相似文献   
2.
Tonle Sap Lake (TSL) in Cambodia is the largest freshwater body in South‐East Asia and one of the most productive ecosystems in the world. The lake and its ecosystems are widely under threat, however, due to anthropogenic activities occurring inside and outside its basin (e.g., water infrastructure development; land use change), being poorly understood in most aspects. This study provides an updated review of the state of knowledge of the TSL ecosystem, as well as important research directions for sustainable lake environmental management of Tonle Sap Lake by focusing on four major topics, including climate change and hydrology, sediment dynamics, nutrient dynamics and primary and secondary production. The findings of this study suggest anthropogenic activities in the TSL basin, as well as the Mekong, in combination together with climate changes, are key contributing factors in the degradation of the TSL ecosystem. Insufficient accurate data, however, precludes quantitative assessment of such impacts, making it difficult to quantitatively assess and accurately understand the ecosystem process in the lake ecosystem. More efforts are recommended in regard to environmental monitoring in all sub‐basins around TSL, assessing seasonal changes in nutrient and sediment inputs corresponding to water level and flow changes, assessing cumulative impacts of water infrastructure and climate change on the ecosystem dynamics, and elucidation of ecosystem processes within the lake's internal system.  相似文献   
3.
以钱江通道过江隧道工程为背景,利用有限元方法对盾构隧道施工引起的地表变形进行数值模拟分析,与经验公式计算结果比较,验证了有限元数值分析模型的合理性,同时分析了隧道周围土体移动规律和地表沉降规律。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号