首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
水利工程   20篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2018年   2篇
  2014年   1篇
  2013年   1篇
  2012年   4篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
Walleye (Sander vitreus) are the top nearshore predator in the Bay of Quinte and eastern Lake Ontario, where they have strong ecological and socio-economic impacts. The population is known to migrate seasonally; however, the precise timing and extent are not well defined. This study used acoustic telemetry to provide a fisheries-independent measure of timing, extent, and seasonal distribution of migration in Lake Ontario and to examine the influence of sex, spawning river, size, and year. Annual detection histories were used to determine the timing of migrations into and out of the spawning rivers, departure from the Bay of Quinte post-spawn, and the pre-spawn return to the Bay of Quinte. Sequence analysis was subsequently used to examine how fish occupy defined regions of eastern Lake Ontario annually and identify patterns in migration strategy. Spawning site fidelity was high for both rivers (91–97%) and annual residency within the Bay of Quinte was low (9.5%). Females spent less time in spawning rivers, migrated to the main lake earlier, and generally travelled further than males. Larger fish also migrated to the main lake first and travelled further, and differences in timing between spawning rivers were minor. Annual differences in timing were observed and were most likely related to environmental differences between years. Cluster analysis was used to identify groups of fish which utilized unique annual migration strategies and demonstrated sex and size had an important influence on the variability in annual spatial occupancy, but the importance of spawning river and year was minimal.  相似文献   
2.
This study provides species-specific catch and baseline mortality estimates of non-target species (by-catch) for the Saginaw Bay, Lake Huron commercial trap net fishery. By-catch can represent a significant mortality source that is often unknown. By-catch and by-catch mortality rates in the Saginaw Bay commercial trap net fishery, which primarily targets lake whitefish (Coregonus clupeaformis), yellow perch (Perca flavescens), and channel catfish (Ictalurus punctatus), are currently unknown. From May through August 2010, we observed onboard commercial trap net vessels and took species-specific counts of by-catch and estimated initial by-catch mortality (i.e., morbid or floating fish). The high levels of walleye (Sander vitreus) catch and mortality observed within inner Saginaw Bay have not been previously documented in the Laurentian Great Lakes. Walleye by-catch averaged 127.3 individuals per trap net lift and 42% of those caught were morbid. The levels of lake trout (Salvelinus namaycush) catch observed were within the range observed in previous studies, but mortality (percent) was higher than has been previously observed. Lake trout by-catch averaged 39.4 individuals per lift and 39.2% of those were morbid. Through the use of generalized linear models, this analysis also indicated factors that most influenced catch of non-target species including time of year and soak time (i.e., time interval between trap net lifts). Surface water temperature and trap net depth most influenced mortality. These results may inform fishers and fisheries managers and highlight the need for comprehensive by-catch monitoring throughout the Great Lakes.  相似文献   
3.
Walleye (Sander vitreus) is an important sport fish in the Great Lakes that is experiencing low reproductive success after severe population declines starting in the late 1940s. In the Muskegon River, Michigan, natural reproduction of walleyes remains low and is largely supplemented by stocking. To determine factors influencing walleye reproductive success in the Muskegon River, we estimated walleye egg survival using insitu egg incubators covered with nitex screening (2003–2004) and estimated density and survival of fertilized eggs caught on furnace filter traps across different substrate types (2005–2006). We compared physical habitat suitability for walleye eggs under high and low flow scenarios. Density of walleye eggs was highest in regions of gravel/cobble substrates. Egg survival was higher in egg incubators (24–49.5%) than on furnace filter traps (2.0%), suggesting predation is an important source of walleye egg mortality in the Muskegon River. Cold water temperatures that extended developmental stage durations may also be an important source of egg mortality. The dynamic habitat suitability model predicted low suitability for eggs due to poor temperature and velocity conditions. Despite low egg survival rates, 40 million to 1 billion eggs were estimated to hatch. The low natural reproduction of walleyes in the Muskegon River is likely due to a combination of low walleye egg survival and failure of walleye larvae to reach their nursery grounds in Muskegon Lake.  相似文献   
4.
Few active fish spawning grounds have been found in channels connecting the Great Lakes. Here, we describe one near Belle Isle in the Detroit River, part of the channel connecting lakes Huron and Erie. There, in 2005, we collected 1,573 fish eggs, cultured them, and identified the hatched larvae as walleye (Sander vitreus) and white sucker (Catostomus commersoni). Walleye spawning peaked during the week of April 12–19; white sucker spawning peaked on May 10. Average areal rate of egg deposition by walleye and white sucker at this spawning ground in 2005 was 346 and 25 eggs/m2, respectively. Our environmental measurements showed that bottom substrates on this spawning ground were largely sand, not optimal for fish reproduction. We hypothesize that reproduction of these fish at this spawning ground could be enhanced by adding rock and gravel substrates for protection of deposited fish eggs and suggest that reproduction by walleye in the Detroit River may add resilience to production of walleye in western Lake Erie.  相似文献   
5.
Interspecific interactions among walleye Sander vitreus, lake whitefish Coregonus clupeaformis, and yellow perch Perca flavescens in Green Bay could influence the population status of each species, but potential trophic interactions are poorly understood. Our objectives were to determine if diet assemblages for each species and diet overlap among species varied spatially and temporally within Green Bay. Adult walleye (≥381 mm total length (TL); N = 981), lake whitefish (≥432 mm TL; N = 1507), and yellow perch (≥150 mm TL; N = 1174) were collected during May-October of 2018 and 2019 from multiple locations in southern and northern Green Bay. Diet assemblages of each species varied between northern and southern Green Bay, but walleye diets were more temporally variable (among months within zones and between years) than diets of lake whitefish or yellow perch. Lake whitefish represented a seasonally important prey item for walleye in southern Green Bay, composing 10 % and 41 % of walleye diets by weight in May and June, respectively. Yellow perch generally composed <15 % of walleye diets by weight but were consumed at a broader spatiotemporal scale than lake whitefish. Diet overlap between walleye and both lake whitefish and yellow perch was generally weak or moderate, whereas diet overlap between whitefish and perch was generally strong. Our assessment of adult trophic interactions suggests that changes in the population status of one species could influence fisheries for all three, and we identify additional research questions to address potential population-level effects of these trophic interactions.  相似文献   
6.
Concentrations of total mercury (THg) in the axial musculature of northern pike (Esox lucius), walleye (Sander vitreus), lake whitefish (Coregonus clupeaformis), and sauger (Sander canadensis) were analyzed from several regions of Lake Winnipeg and three main inflows, focusing on Mossy Bay in the North Basin of the lake. Length-standardized means (standard means) indicated THg concentrations in pike of 550 mm fork length (0.44 ppm) and walleye measuring 400 mm (0.38 ppm) from Mossy Bay were highest in 1971 and declined to 0.13 and 0.22 ppm, respectively, by 1974. Standard means of both these species have been similar since 2010 (walleye; approximately 0.11 ppm) and 2013 (pike; approximately 0.17 ppm), except for a significant increase to 0.15 ppm in walleye in 2019, potentially related to concurrent changes in trophic interactions with invasive fish and invertebrate species. Standard means of 300 mm long sauger (0.23–0.29 ppm) did not decline significantly between 1971 and 1974, and those of 350 mm long whitefish ranged from 0.006 to 0.028 ppm from 1983 to 2016 with no clear temporal trend. In concert with data from other areas of Lake Winnipeg and the three inflows for 2000–2019, these results indicate higher contemporary concentrations in the South Basin of the lake. This latitudinal gradient in fish THg is assumed to be a result of continuous mercury inputs from the Red and the Winnipeg River, whereas a former point source of industrial mercury in the Saskatchewan River is no longer relevant. According to human consumption limits based on tolerable daily intake calculations and current THg concentrations of fish from Mossy Bay, substantial quantities of whitefish, pike, and walleye fish can be safely eaten.  相似文献   
7.
River diversions can have unexpected biological consequences. In the mid-20th century, the upper Ogoki River in northern Ontario was diverted from its original Hudson Bay drainage to flow into the Great Lakes. Although walleye were present in both systems prior to the diversion, the Hudson Bay and Great Lakes watersheds had previously been separated since the early Holocene (7500–8500 years ago). We assessed the effects that this inter-basin diversion has had on the genetic structure of two formerly allopatric populations. We assessed the genetic structure and diversity of walleye in the Ogoki and Little Jackfish river systems and Lake Nipigon (number, distribution, and divergence of identified genetic groups) and quantified the contribution of fish from the historical population (Hudson Bay drainage Ogoki River) and Lake Nipigon to walleye in the Ogoki and Little Jackfish Rivers. Walleye from Ogoki Lake, the Ogoki River diversion through the Little Jackfish River, Lake Nipigon and Nipigon Bay were genotyped at 10 microsatellite loci. Significant genetic differences were detected among sampling locations: walleye from Ogoki Lake, presumably representing fish originally from the historical Ogoki River gene pool, were genetically similar to but statistically distinct from walleye within the diversion. Walleye from sample sites within the diversion and Ombabika Bay appear to form a single genetic group that is largely derived from the Ogoki watershed and differs significantly from walleye in Lake Nipigon and Nipigon Bay. Our findings confirm that the historical river diversion has had long-term effects on the genetic composition of contemporary walleye populations.  相似文献   
8.
Adequate densities of zooplankton prey are critical for growth and survival of larvae of many fish species. Little information exists on the density of zooplankton in Great Lakes inshore areas during early spring, when larvae of important fishes rely on zooplankton. Reduced age-0 walleye recruitment and the absence of data on zooplankton availability for larval walleyes in northern Green Bay, Lake Michigan, led us to assess zooplankton densities during this critical spring period. We conducted biweekly vertical plankton tows in 2014–2016 near reefs and river plumes used by spawning walleyes for periods when larval walleyes were expected to be relying on zooplankton prey. Densities of zooplankton were well below literature values identified for good growth and survival of larval walleyes, averaging 1.5 individuals L−1 for all taxa and 0.12 individuals L−1 for large-bodied taxa across all sites and sampling dates. Various factors could contribute to the low density of zooplankton observed. We found low but significantly higher densities of cyclopoid copepods, nauplii, Bosmina, and total zooplankton at river mouth sites compared to open water sites. These results suggest that food availability for larval walleye in our study area was severely limiting which is consistent with the paucity of strong year classes observed since 2000. We suspect northern Green Bay has limited potential for producing strong year classes of walleyes under such conditions. Fishery managers working in unproductive waters should consider assessing the zooplankton community during critical periods to identify potential bottlenecks to reproductive success and larval fish survival.  相似文献   
9.
Tributaries provide spawning habitat for three of four major sub-stocks of Lake Erie walleye (Sander vitreus). Despite anthropogenic degradation and the extirpation of other potamodromous species, the Maumee River, Ohio, USA continues to support one of the largest fish migrations in the Laurentian Great Lakes. To determine if spawning habitat availability and quality could limit production of Maumee River walleye, two habitat suitability models were created for the lower 51 km of the Maumee River and the distribution and numbers of walleye eggs deposited in a 25 km stretch of river were assessed. Walleye eggs were collected using a diaphragm pump at 7 and 10 sites from March/April to May 2014 and 2015. The habitat suitability models showed that <3% of the river yielded ‘good’ walleye spawning habitat and 11–38% yielded ‘moderate’ walleye spawning habitat, depending on the model. However, a large set of rapids at river kilometer 28 and more than five river kilometers of less suitable habitat separated areas of ‘good’ habitat. The rapids may present a migratory barrier for many spawning walleye, as modeled water velocities exceed maximum estimated walleye swim speeds 71–100% of days during pre-spawn migration and spawning during the study period. In both study years, there was a sharp decline in mean egg numbers from spawning sites downstream of the rapids (439.7 eggs/2 min tow ± 990.6 SD) to upstream sites (5.9 eggs/2 min tow ± 19.4 SD). Physical barriers like rapids may reduce spawning habitat connectivity and could limit walleye production in the Maumee River.  相似文献   
10.
Fish egg sizes vary intra-specifically among stocks and individuals, and such variation may reflect a combination of maternal and environmental influences. As egg size variation has important implications for individual and population recruitment success, it is useful to quantify egg-size variation and identify potential factors underlying such variation. We evaluated 1) within-stock maternal influences on egg size and 2) the relative elucidatory power of maternal effects versus stock in explaining inter-individual mean egg size based on eggs collected during 2007–2008 from five walleye Sander vitreus stocks in the North American Laurentian Great Lakes region. We used both linear regression models and classification and regression trees (CART) to describe egg-size variation. Egg size tended to increase with female length and for some stocks was greatest for intermediate maternal ages. However, maternal influences on egg size were relatively low and variable between years. In contrast, stock had a stronger effect; walleye egg-size variation was greater among stocks than within stocks. After controlling for the influence of maternal age and length, we found that egg size was relatively small for fish spawning in Maumee and Sandusky Rivers (western Lake Erie), intermediate in Oneida Lake and Tittabawassee River (Saginaw Bay, Lake Huron), and relatively large in Van Buren Bay (eastern Lake Erie) and Little Bay de Noc (northern Green Bay, Lake Michigan). Such inter-stock differences in maternal influence adjusted egg size appeared to be negatively associated with a system's productivity; suggesting a potential adaptive response of egg size to early life habitat conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号