首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Flight and passenger efficiency-fairness trade-off for ATFM delay assignment
Institution:1. Faculty of Economics, Osaka University of Economics, Japan;2. Sauder School of Business, University of British Columbia, Canada;1. Bowling State University, Department of Construction Management, Bowling Green, OH 43403-0001, United States;2. TU/e, Eindhoven University of Technology, Eindhoven, the Netherlands;3. Georgia Institute of Technology, School of Civil and Environmental Engineering, 790 Atlantic Drive, Atlanta, GA 30332-0355, United States
Abstract:This paper studies trade-offs between efficiency (performance) and fairness (equity), when assigning ATFM delay pre-tactically (on-ground at origin airport) due to reduced airport capacity at destination. Delay is assigned as the result of the optimisation of a deterministic multi-objective problem considering flight and passenger perspectives when defining objectives of performance and fairness. Two optimisation cases are presented: one where objectives are based on flight metrics, and another one where they are based on passenger metrics. The paper defines and analyses efficiency-fairness trade-offs: the concepts of price of fairness for flights and passengers are defined as the percentage of efficiency loss due to the consideration in the optimisation of fairness; whereas the price of efficiency is considered as the fairness loss relative to the maximum value of the fairness metric, when considering flight or passenger delay in the optimisation. The optimisation model is based on the ground holding problem and uses various objective functions. For performance, total delay for flights (considering reactionary delay), and total delay for passengers (considering outbound connections) are defined. For fairness, the deviation of flight arrivals from a Ration By Schedule solution, and the deviation of delay experienced by passengers with respect to the one obtained in an RBS situation are used. An illustrative application on traffic at Paris Charles de Gaulle airport, a busy European hub airport, and including realistic values of traffic is modelled. A comprehensive trade-off analysis is presented. Results show, how in some cases, gains on one stakeholder can be achieved without implying any detriment on the other one. Passengers are more sensitive to the optimisation and hence, their consideration when assigning delay is recommended. Further research should explore how to combine flight and passenger indicators in the optimisation and consider how the lack of data availability could be mitigated.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号