首页 | 本学科首页   官方微博 | 高级检索  
     


Automated data-driven prediction on aircraft Estimated Time of Arrival
Affiliation:1. Ecole Nationale de l’Aviation Civile, University of Toulouse, 7 Avenue Edouard Belin, Toulouse 31055, France;2. Mathematical Institute of Toulouse, University of Toulouse, 118 Route de Narbonne, Toulouse 31062, France
Abstract:4D trajectory prediction is the core element of the future air transportation system. It aims to improve the operational ability and the predictability of air traffic. In this paper, a novel automated data-driven framework to deal with the prediction of Estimated Time of Arrival (ETA) on the runway at the entry point of Terminal Manoeuvring Area (TMA) is introduced. The proposed framework mainly consists of data preprocessing and machine learning models. Firstly, the dataset is divided, analyzed, cleaned, and estimated. Then, the flights are clustered into partitions according to different runway-in-use (QFU). Several candidate machine learning models are trained and selected on the corresponding dataset of each QFU. Feature engineering is conducted to transform raw data into features. After that, the experiments are performed on real ADS-B data in Beijing TMA with nested cross validation. By comparing the prediction performance on the preprocessed and un-preprocessed datasets, the results demonstrate that the proposed data preprocessing is able to improve the data quality. It is also robust to outliers, missing data, and noise. Finally, an ensemble learning strategy named stacking is introduced. Compared to other individual models, the stacked model has a more complex structure and performs best in ETA prediction. This fact reveals that the framework proposed in this study could make accurate and reliable ETA predictions.
Keywords:Air traffic management  4D trajectory prediction  Estimated time of arrival  Data mining  Machine learning
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号