首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Radiative forcing and the optimal rotation age
Authors:Matthew P Thompson  Darius Adams  John Sessions
Institution:Department of Forest Engineering, Resources, and Management, College of Forestry, Oregon State University, Corvallis, OR, USA
Abstract:Forests help mitigate climate change by sequestering atmospheric carbon. However, boreal and high-latitude temperate forests may also contribute to global warming due to the albedo effect. The relative effects of carbon sequestration and albedo can be quantified in terms of radiative forcing. We present a stylized, stand-level analysis to determine the optimal rotation age when considering a tax/subsidy scheme based on radiative forcing and the notion of equivalent carbon emissions. Additional management decision variables considered include species choice and regeneration effort, since these can impact the albedo effect. We demonstrate analytically that the optimal rotation length is likely shortened when albedo-related equivalent emissions are incorporated, relative to a policy based only on carbon. Empirical results indicate that rotation ages do decrease relative to a “carbon only” policy, and approach the traditional (timber only) Faustmann rotation age as equivalent emission rates increase. Our results suggest that forestation does not necessarily provide climatic benefits in all circumstances, and that, at the margin, other opportunities for carbon reduction (e.g. abatement), or pursuing forestation in other locations, become more attractive.
Keywords:Forest management  Climate change  Radiative forcing  Carbon sequestration  Optimal rotation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号