首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于孪生神经网络的深度异构网络嵌入算法
引用本文:李 熊,韩鑫泽,王朝亮,蒋 群,胡瑛俊. 一种基于孪生神经网络的深度异构网络嵌入算法[J]. 国际商务研究, 2020, 0(11)
作者姓名:李 熊  韩鑫泽  王朝亮  蒋 群  胡瑛俊
作者单位:国网浙江省电力有限公司,杭州 310007
基金项目:国家电网科技项目(1100-201919158A-0-0-00)
摘    要:针对现有异构网络嵌入方法导致的捕获关系冗余和模糊的问题,提出了一种基于孪生神经网络的深度异构网络嵌入模型。首先,基于面向关系的深度嵌入(Relation-Oriented Deep Embedding,RODE)框架构建了异构网络嵌入模型,以区分同型节点和异型节点之间的关系;其次,将同型节点与异类节点之间的相似性近似到低维空间,通过构建多任务的孪生神经网络来实现节点之间结构和语义关系的深度嵌入;最后,选取四个数据集执行典型网络挖掘任务,并与其他六种算法进行实验对比分析。实验结果表明,保持相同类型节点之间的相似性有助于提高节点分类效率,且损失函数在提高异构网络嵌入质量方面具有良好的优越性;RODE模型能够有效提高稀疏网络的嵌入质量,且具有良好的稳定性和鲁棒性。

关 键 词:异构信息网络;孪生神经网络;元路径;异构网络嵌入

A Deep Heterogeneous Network Embedding Algorithm Based on Twin Neural Network
LI Xiong,HAN Xinze,WANG Zhaoliang,JIANG Qun,HU Yingjun. A Deep Heterogeneous Network Embedding Algorithm Based on Twin Neural Network[J]. International Business Research, 2020, 0(11)
Authors:LI Xiong  HAN Xinze  WANG Zhaoliang  JIANG Qun  HU Yingjun
Affiliation:State Grid Zhejiang Electric Power Co.,Ltd.,Hangzhou 310007,China
Abstract:For the problem of redundancy and ambiguity of capturing relationship caused by existing heterogeneous network embedding methods,a deep heterogeneous network embedding based on twin neural network is proposed.First,a heterogeneous network embedding model is constructed based on the relation-oriented deep embedding(RODE) framework.The relationship between homogeneous nodes and heterogeneous nodes is distinguished by a heterogeneous network model.Second,the similarity between nodes of the same type and nodes of different types is approximated to a low-dimensional space.The deep embedding of the structure and semantic relationship between nodes is realized by constructing a multi-task twin neural network.Finally,four data sets are selected to perform typical network mining tasks,and compared with other six algorithms.Experimental results show that the similarity between nodes of the same type is maintained to improve the efficiency of node classification,and the loss function has good advantages in improving the quality of heterogeneous network embedding.RODE model can effectively improve the embedding quality of sparse networks,and has good stability and robustness.
Keywords:heterogeneous information network  twin neural network  meta path  heterogeneous network embedding
点击此处可从《国际商务研究》浏览原始摘要信息
点击此处可从《国际商务研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号