On the existence of moments of partially restricted reduced form coefficients |
| |
Authors: | P.A.V.B. Swamy J.S. Mehta |
| |
Affiliation: | Federal Reserve Board, Washington, DC 20551, USA;Temple University, Philadelphia, PA 19122, USA |
| |
Abstract: | In this paper ridgelike Bayesian estimators of structural coefficients have been used to form the partially restricted reduced form estimators. These partially restricted reduced form estimators are simple in form and possess finite sampling moments and risk in contrast to other restricted reduced form estimators that possess no finite moments and have infinite risk relative to quadratic loss functions. The usual k-class implied partially restricted reduced form estimators with 0≦k≦1 do not posses finite moments unless the degree of overidentification (or the excess of sample size over the number of coefficients) of the structural equation being estimated is suitably restricted. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|