首页 | 本学科首页   官方微博 | 高级检索  
     


A geometric approach to portfolio optimization in models with transaction costs
Authors:Yuri?Kabanov  author-information"  >  author-information__contact u-icon-before"  >  mailto:kabanov@math.univ-fcomte.fr"   title="  kabanov@math.univ-fcomte.fr"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Claudia?Klüppelberg
Affiliation:(1) Université de Franche-Comté, 16 Route de Gray, 25030 Besançon Cedex, France;(2) Central Economics and Mathematics Institute, Moscow, Russia;(3) Center for Mathematical Sciences, Munich University of Technology, Boltzmannstrasse 3, 85747 Garching bei München, Germany
Abstract:We consider a continuous-time stochastic optimization problem with infinite horizon, linear dynamics, and cone constraints which includes as a particular case portfolio selection problems under transaction costs for models of stock and currency markets. Using an appropriate geometric formalism we show that the Bellman function is the unique viscosity solution of a HJB equation.Mathematics Subject Classification (1991): 60G44JEL Classification: G13, G11This research was done at Munich University of Technology supported by a Mercator Guest Professorship of the German Science Foundation (Deutsche Forschungsgemeinschaft). The authors also express their thanks to Mark Davis, Steve Shreve, and Michael Taksar for useful discussions concerning the principle of dynamic programming.
Keywords:Currency market  transaction costs  consumption-investment problem  utility function  HJB equation  viscosity solution
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号