首页 | 本学科首页   官方微博 | 高级检索  
     

n阶Fredholm积分-微分方程的有理Haar小波解法
引用本文:张建平. n阶Fredholm积分-微分方程的有理Haar小波解法[J]. 价值工程, 2012, 31(23): 268-269
作者姓名:张建平
作者单位:榆林学院,榆林,719000
基金项目:榆林学院高层次人才基金项目
摘    要:一阶积分-微分方程是我们求解积分微分方程时常见的一类方程,其求解方法比较简单;而在实际问题中我们常常会遇到高阶积分-微分方程的求解,求其数值解相对比较困难。作者利用有理Haar小波的积分法和积分算子矩阵对一般的n阶Fredholm积分-微分方程进行了求解。最后给出的数值算例表明了该方法的有效性。

关 键 词:积分-微分方程  有理Haar小波  算子矩阵

Rationalized Haar Wavelets Method for Solving nth-order Fredholm Integro-differential Equations
ZHANG Jian-ping. Rationalized Haar Wavelets Method for Solving nth-order Fredholm Integro-differential Equations[J]. Value Engineering, 2012, 31(23): 268-269
Authors:ZHANG Jian-ping
Affiliation:ZHANG Jian-ping(Yulin University,Yulin 719000,China)
Abstract:First order integro-differential equations are a class of equations we solve the integral differential equations,the solution is relatively simple;while in the practical problems we often meet the high order Integro-differential equations,solving the numerical solution is relatively difficult.The authors use the rationalized Haar wavelet integral and integral operator matrix to solve the th-order of Fredholm integral-differential equations.Finally,numerical example show the effectiveness of the method.
Keywords:integro-differential equations  rationalized Haar wavelets  operational matrix
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号