1. Department of Economics, University of Essex, UK;2. Department of Economics, London School of Economics, UK
Abstract:
Pseudo maximum likelihood estimates are developed for higher-order spatial autoregressive models with increasingly many parameters, including models with spatial lags in the dependent variables both with and without a linear or nonlinear regression component, and regression models with spatial autoregressive disturbances. Consistency and asymptotic normality of the estimates are established. Monte Carlo experiments examine finite-sample behaviour.