首页 | 本学科首页   官方微博 | 高级检索  
     


A heuristic method for parameter selection in LS-SVM: Application to time series prediction
Authors:Giné  s Rubio,Hé  ctor Pomares Ignacio Rojas,Luis Javier Herrera
Affiliation:
  • Department of Computer Architecture and Computer Technology, University of Granada, C/ Periodista Daniel Saucedo sn, 18071 Granada, Spain
  • Abstract:Least Squares Support Vector Machines (LS-SVM) are the state of the art in kernel methods for regression. These models have been successfully applied for time series modelling and prediction. A critical issue for the performance of these models is the choice of the kernel parameters and the hyperparameters which define the function to be minimized. In this paper a heuristic method for setting both the σ parameter of the Gaussian kernel and the regularization hyperparameter based on information extracted from the time series to be modelled is presented and evaluated.
    Keywords:Least squares support vector machines   Gaussian kernel parameters   Hyperparameters optimization   Time series prediction
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号