首页 | 本学科首页   官方微博 | 高级检索  
     


An empirical analysis of neural network memory structures for basin water quality forecasting
Authors:David West  Scott Dellana
Affiliation:
  • College of Business, Department of Marketing and Supply Chain Management, East Carolina University, Greenville, NC 27858-4353, United States
  • Abstract:This research investigates the cumulative multi-period forecast accuracy of a diverse set of potential forecasting models for basin water quality management. The models are characterized by their short-term (memory by delay or memory by feedback) and long-term (linear or nonlinear) memory structures. The experiments are conducted as a series of forecast cycles, with a rolling origin of a constant fit size. The models are recalibrated with each cycle, and out-of-sample forecasts are generated for a five-period forecast horizon. The results confirm that the JENN and GMNN neural network models are generally more accurate than competitors for cumulative multi-period basin water quality prediction. For example, the JENN and GMNN models reduce the cumulative five-period forecast errors by as much as 50%, relative to exponential smoothing and ARIMA models. These findings are significant in view of the increasing social and economic consequences of basin water quality management, and have the potential for extention to other scientific, medical, and business applications where multi-period predictions of nonlinear time series are critical.
    Keywords:Watershed management   Short-term memory   Jordan-Elman neural network   Gamma memory neural network
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号