首页 | 本学科首页   官方微博 | 高级检索  
     


A smooth non-parametric estimation framework for safety-first portfolio optimization
Authors:Haixiang Yao  Yong Li
Affiliation:1. School of Finance, Guangdong University of Foreign Studies, Guangzhou 510006, China;2. Faculty of Automation, Guangdong University of Technology, Guangzhou 510006, China;3. UQ Business School, The University of Queensland, St Lucia, QLD 4072, Australia
Abstract:In this paper, we adopt a smooth non-parametric estimation to explore the safety-first portfolio optimization problem. We obtain a non-parametric estimation calculation formula for loss (truncated) probability using the kernel estimator of the portfolio returns’ cumulative distribution function, and embed it into two types of safety-first portfolio selection models. We numerically and empirically test our non-parametric method to demonstrate its accuracy and efficiency. Cross-validation results show that our non-parametric kernel estimation method outperforms the empirical distribution method. As an empirical application, we simulate optimal portfolios and display return-risk characteristics using China National Social Security Fund strategic stocks and Shanghai Stock Exchange 50 Index components.
Keywords:Portfolio optimization  Non-parametric kernel estimation  Safety-first  Value at Risk  Social security fund
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号