A new closed-form formula for pricing European options under a skew Brownian motion |
| |
Authors: | Song-Ping Zhu Xin-Jiang He |
| |
Affiliation: | School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, Australia |
| |
Abstract: | In this paper, we present a new pricing formula based on a modified Black–Scholes (B-S) model with the standard Brownian motion being replaced by a particular process constructed with a special type of skew Brownian motions. Although Corns and Satchell [2007. “Skew Brownian Motion and Pricing European Options.” The European Journal of Finance 13 (6): 523–544] have worked on this model, the results they obtained are incorrect. In this paper, not only do we identify precisely where the errors in Although Corns and Satchell [2007. “Skew Brownian Motion and Pricing European Options”. The European Journal of Finance 13 (6): 523–544] are, we also present a new closed-form pricing formula based on a newly proposed equivalent martingale measure, called ‘endogenous risk neutral measure’, by which only endogenous risks should and can be fully hedged. The newly derived option pricing formula takes the B-S formula as a special case and it does not induce any significant additional burden in terms of numerically computing option values, compared with the effort involved in computing the B-S formula. |
| |
Keywords: | Option pricing skew Brownian motion non-normal distribution |
|
|