首页 | 本学科首页   官方微博 | 高级检索  
     

基于主成分分析-RBF神经网络模型的备件预测研究
引用本文:关子明,常文兵. 基于主成分分析-RBF神经网络模型的备件预测研究[J]. 物流科技, 2009, 32(4): 122-126
作者姓名:关子明  常文兵
作者单位:北京航空航天大学,北京,100191
摘    要:备件预测在产品物流保障中占有极其重要的地位,针对现有各种航空备件预测方法精度较低,无法满足实际需求的现状,文章提出了基于主成分分析-RBF神经网络模型的备件预测方法:首先利用主成分分析方法去除原始输入层数据的相关性,以解决RBF神经网络模拟预测备件需求时输入变量过多,网络规模过大导致效率下降的问题.最后选择合适的径向基函数密度训练神经网络。通过结合实例进行分析,取得了较好的效果。

关 键 词:备件预测  主成分分析  RBF神经网络

The Forcasting Research for Spare Parts Based on Principal Component Analysis and RBF Artificial Neural Network
GUAN Zi-ming,CHANG Wen-bing. The Forcasting Research for Spare Parts Based on Principal Component Analysis and RBF Artificial Neural Network[J]. Logistics Management, 2009, 32(4): 122-126
Authors:GUAN Zi-ming  CHANG Wen-bing
Affiliation:Beijing University of Aeronauties and Astronautics;Beijing 100191;China
Abstract:Spare parts prediction stands a very important status in production logistic guarantee.Existing aviation material prediction approach has a low precision which can't meet the actual need.According to the problem, the forecasting approach for spare parts based on principal component analysis and artificial neural network was given.Firstly the approach can wipe off the correlation of the initial input data, in order to solve the problem that RBF network has too many input factor when predicting and then the e...
Keywords:spare parts prediction  principal component analysis  RBF artificial neural networks  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号