首页 | 本学科首页   官方微博 | 高级检索  
     


Portfolio selection in a data-rich environment
Authors:Mohammed Bouaddi  Abderrahim Taamouti
Affiliation:1. Department of Economics, American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt;2. Department of Economics, Universidad Carlos III de Madrid, Calle Madrid, 126, 28903 Getafe (Madrid) España, Spain;1. School of Economics, University of East Anglia, United Kingdom;2. School of Economics, University of Kent, United Kingdom;1. School of Economics, University of Kent, Canterbury, Kent CT2 7NP, United Kingdom;2. Bank of Japan, Monetary Affairs Department, 2-1-1 Nihonbashi-Hongokucho, Chuo-ku, Tokyo 103-0021, Japan;1. Department of Economics, University of Central Florida, P.O. Box 161400, Orlando, FL 32816-1400, USA;2. School of Economics, Southwestern University of Finance and Economics, Chengdu, Sichuan 611130, China;1. Aix-Marseille School of Economics (AMSE), Aix-Marseille University, France;2. UCLouvain, IRES and CORE, Belgium;3. University of Lausanne and IREGE – University of Savoie, France;4. LAMETA, University of Montpellier I and INRA, France
Abstract:We model portfolio weights as a function of latent factors that summarize the information in a large number of economic variables. This approach (hereafter diffusion index approach) offers the opportunity to exploit a much richer information base to improve portfolio selection. We use factor analysis to estimate the space spanned by the factors. This provides consistent estimates for the optimal weights as the number of economic variables and sample size go to infinity. We consider an empirical application to illustrate the practical usefulness of our approach. The results indicate that the diffusion index approach helps to improve the portfolio performance.
Keywords:Portfolio's weights modeling  Factor analysis  Principal components  Portfolio performance  Stock returns  Fama–French factors  Economic factors  VIX
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号