首页 | 本学科首页   官方微博 | 高级检索  
     


A Predictive Estimator of the Mean with Missing Data
Authors:M. Rueda  S. González  A. Arcos
Affiliation:(1) Department of Statistics and Operational Research, Facultad de Ciencias, University of Granada, 18071 Granada, Spain;(2) Department of Statistics and Operational Research, University of Jaén, Andalucia, Spain;(3) Departo. de Estatistica e I. O., Facultad de Ciencias, 18071 Granada, Spain
Abstract:One of the most difficult problems confronting investigators who analyze data from surveys is how treat missing data. Many statistical procedures can not be used immediately if any values are missing. This paper considers the problem of estimating the population mean using auxiliary information when some observations on the sample are missing and the population mean of the auxiliary variable is not available. We use tools of classical statistical estimation theory to find a suitable estimator. We study the model and design properties of the proposed estimator. We also report the results of a broad-based simulation study of the efficiency of the estimator, which reveals very promising results.
Keywords:auxiliary information  missing data  prediction approach  fixed model approach  superpopulation model
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号