首页 | 本学科首页   官方微博 | 高级检索  
     


The conditional autoregressive Wishart model for multivariate stock market volatility
Authors:Vasyl GolosnoyBastian Gribisch  Roman Liesenfeld
Affiliation:
  • Institute of Statistics and Econometrics, Christian-Albrechts-Universität Kiel, Germany
  • Abstract:We propose a Conditional Autoregressive Wishart (CAW) model for the analysis of realized covariance matrices of asset returns. Our model assumes an autoregressive moving average structure for the scale matrix of the Wishart distribution. It accounts for positive definiteness of covariance matrices without imposing parametric restrictions, and can be estimated by Maximum Likelihood. We also propose extensions of the CAW model obtained by including a Mixed Data Sampling (MIDAS) component and Heterogeneous Autoregressive (HAR) dynamics for long-run fluctuations. The CAW models are applied to realized variances and covariances for five New York Stock Exchange stocks.
    Keywords:C32   C58   G17
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号