首页 | 本学科首页   官方微博 | 高级检索  
     


THE PREDICTABILITY OF STOCK MARKET RETURNS IN SOUTH AFRICA: PARAMETRIC VS. NON‐PARAMETRIC METHODS
Authors:LUMENGO BONGA‐BONGA  MUTEBA MWAMBA
Affiliation:1. University of Johannesburg, South Africa;2. Lecturer, University of Johannesburg
Abstract:This paper compares the forecasting performance of a sub‐class of univariate parametric and non‐parametric models in predicting stock market returns in South Africa. To account for conditional heteroskedasticity in stock returns data, the non‐parametric model is generated by the conditional heteroskedastic non‐linear autoregressive (NAR) model, while the parametric model is produced by the generalised autoregressive conditional heteroskedastic in mean (GARCH‐M) model. The results of the paper show that the NAR as a non‐parametric model performs better than the GARCH‐M model in short‐term forecasting horizon, and this indicates the importance of a distribution‐free model in predicting stock returns in South Africa.
Keywords:C14  C53  Non‐parametric  GARCH‐M  stock market returns  predictability
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号