首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
基于支持向量机回归的中国CPI预测研究
作者姓名:
尹琴琴
樊重俊
作者单位:
上海理工大学管理学院
摘 要:
本文针对中国CPI指数的预测问题.首先用主成分分析方法对影响CPI指数的八个指标进行降维处理.然后利用支持向量机技术建立起中国CPI指数的预测模型并对我国实际的CPI指数进行了预测。实证分析结果表明,PCA—SVM模型能够有效地对CPI指数进行短期预测。最后.与单纯的支持向量机模型的预测结果做了对比.对比结果表明.支持向量机和主成分分析相结合的模型应用于CPI预测具有较高的精确度。
关 键 词:
CPI
支持向量回归机
主成
分分析
本文献已被
维普
等数据库收录!
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号