Estimation of an endogenous switching regression model with discrete dependent variables: Monte-Carlo analysis and empirical application of three estimators |
| |
Authors: | Ayal Kimhi |
| |
Affiliation: | (1) Department of Agricultural Economics and Management, Hebrew University, P.O. Box 12, Rehovot 76100, Israel (e-mail: kimhi@agri.huji.ac.il), IL |
| |
Abstract: | The performances of alternative two-stage estimators for the endogenous switching regression model with discrete dependent variables are compared, with regard to their usefulness as starting values for maximum likelihood estimation. This is especially important in the presence of large correlation coefficients, in which case maximum likelihood procedures have difficulties to converge. Monte-Carlo simulations indicate that an estimator that corrects for conditional heteroskedasticity of the residuals is superior in almost all instances, and especially when maximum likelihood is problematic. This result is also obtained in an empirical example in which off-farm work participation equations of farm women are conditional on farm work participation status. First version received: July 1995/final version received: March 1998 |
| |
Keywords: | : Endogenous switching discrete dependent variables two-stage estimators Monte-Carlo simulations farm women's off-farm work participation |
本文献已被 SpringerLink 等数据库收录! |
|