(1) Institut für Statistik, Fachbereich 3, Universität Bremen, Bibliotheksstrasse, 28359 Bremen, Germany
Abstract:
For random elements X and Y (e.g. vectors) a complete characterization of their association is given in terms of an odds ratio function. The main result establishes for any odds ratio function and any pre-specified marginals the unique existence of a corresponding joint distribution (the joint density is obtained as a limit of an iterative procedure of marginal fittings). Restricting only the odds ratio function but not the marginals leads to semi-parmetric association models for which statistical inference is available for samples drawn conditionally on eitherXorY. Log-bilinear association models for random vectors X and Y are introduced which generalize standard (regression) models by removing restrictions on the marginals. In particular, the logistic regression model is recognized as a log-bilinear association model. And the joint distribution of X and Y is shown to be multivariate normal if and only if both marginals are normal and the association is log-bilinear.Acknowledgements The author thanks both referees for their helpful comments which improved the first draft of the paper.