A Nonstandard Approach to Option Pricing |
| |
Authors: | Nigel Cutland Ekkehard Kopp Walter Willinger |
| |
Affiliation: | Department of Pure Mathematics, University of Hull, Hull, England;Bellcore, Morristown, NJ |
| |
Abstract: | Nonstandard probability theory and stochastic analysis, as developed by Loeb, Anderson, and Keisler, has the attractive feature that it allows one to exploit combinatorial aspects of a well-understood discrete theory in a continuous setting. We illustrate this with an example taken from financial economics: a nonstandard construction of the well-known Black-Scholes option pricing model allows us to view the resulting object at the same time as both (the hyperfinite version of) the binomial Cox-Ross-Rubinstein model (that is, a hyperfinite geometric random walk) and the continuous model introduced by Black and Scholes (a geometric Brownian motion). Nonstandard methods provide a means of moving freely back and forth between the discrete and continuous points of view. This enables us to give an elementary derivation of the Black-Scholes option pricing formula from the corresponding formula for the binomial model. We also devise an intuitive but rigorous method for constructing self-financing hedge portfolios for various contingent claims, again using the explicit constructions available in the hyperfinite binomial model, to give the portfolio appropriate to the Black-Scholes model. Thus, nonstandard analysis provides a rigorous basis for the economists' intuitive notion that the Black-Scholes model contains a built-in version of the Cox-Ross-Rubinstein model. |
| |
Keywords: | option pricing nonstandard analysis |
|
|