首页 | 本学科首页   官方微博 | 高级检索  
     


Forecasting economic time series with unconditional time-varying variance
Authors:S  bastien ,Rainer
Affiliation:a National Fund for Scientific Research (FNRS), Institut de statistique, Université catholique de Louvain, Voie du Roman Pays, 20, B-1348, Louvain-la-Neuve, Belgium;b Institut de statistique, Université catholique de Louvain, Voie du Roman Pays, 20, B-1348, Louvain-la-Neuve, Belgium
Abstract:The classical forecasting theory of stationary time series exploits the second-order structure (variance, autocovariance, and spectral density) of an observed process in order to construct some prediction intervals. However, some economic time series show a time-varying unconditional second-order structure. This article focuses on a simple and meaningful model allowing this nonstationary behaviour. We show that this model satisfactorily explains the nonstationary behaviour of several economic data sets, among which are the U.S. stock returns and exchange rates. The question of how to forecast these processes is addressed and evaluated on the data sets.
Keywords:Covariance nonstationarity   Rescaled time   Time-modulated process   Nonparametric estimation   Forecasting
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号