A mixed PDE-Monte Carlo approach for pricing credit default index swaptions |
| |
Authors: | Vlad Bally Lucia Caramellino Antonino Zanette |
| |
Affiliation: | (1) Laboratoire d’Analyse et de Mathématiques Appliquèes, Université de Marne-la-Vallée,;(2) Dipartimento di Matematica, Università di Roma Tor Vergata,;(3) Dipartimento di Finanza dell’Impresa e dei Mercati Finanziari, Università di Udine, |
| |
Abstract: | Abstract The problem of numerically pricing credit default index swaptions on a large number of names is considered. We place ourselves in a stochastic intensity framework, where Ornstein-Uhlenbeck-type correlated processes are used to model both firms’ distance to default and a macroeconomic state variable. Here the default of the firms’ follows the reduced-form approach and the (random) intensity of the default depends on the behavior of the diffusion processes. We propose here a numerical method based on both a Monte Carlo and a deterministic approach for solving PDEs by finite differences. Numerical tests demonstrate the efficiency and the robustness of the proposed procedure. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|