首页 | 本学科首页   官方微博 | 高级检索  
     


Mathematical utility theory and the representability of demand by continuous homogeneous functions
Authors:José C. R. Alcantud  Gianni Bosi  Carlos R. Palmero  Magalì E. Zuanon
Affiliation:(1) Facultad de Economía y Empresa, Universidad de Salamanca, E 37008 Salamanca, Spain;(2) Dipartimento di Matematica Applicata “Bruno de Finetti”, Università di Trieste, Piazzale Europa 1, 34127 Trieste, Italy;(3) Facultad de Ciencias Económicas y Empresariales, Universidad de Valladolid, E 47011 Valladolid, Spain;(4) Istituto di Econometria e Matematica per le Decisioni Economiche, Università Cattolica del Sacro Cuore, Largo A. Gemelli 1, 20123 Milano, Italy
Abstract:The resort to utility-theoretical issues will permit us to propose a constructive procedure for deriving a homogeneous of degree one continuous function that gives raise to a primitive demand function under suitably mild conditions. This constitutes the first self-contained and elementary proof of a necessary and sufficient condition for an integrability problem to have a solution by continuous (subjective utility) functions.The work of José C. R. Alcantud has been supported by FEDER and Ministerio de Educación y Ciencia under the Research Project SEJ2005-0304/ECON, and by Consejería de Educación (Junta de Castilla y León) under the Research Project SA098A05. Carlos R. Palmero acknowledges financial support by FEDER and Ministerio de Educación y Ciencia under the Research Project SEJ2005-08709/ECON, and by Consejería de Educación (Junta de Castilla y León) under the Research Project VA017B05.
Keywords:Strong axiom of homothetic revelation  Revealed preference  Continuous homogeneous of degree one utility  Integrability of demand
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号