首页 | 本学科首页   官方微博 | 高级检索  
     


OPTIMAL INVESTMENT IN CREDIT DERIVATIVES PORTFOLIO UNDER CONTAGION RISK
Authors:Lijun Bo  Agostino Capponi
Affiliation:1. Xidian University;2. Johns Hopkins University
Abstract:We consider the optimal portfolio problem of a power investor who wishes to allocate her wealth between several credit default swaps (CDSs) and a money market account. We model contagion risk among the reference entities in the portfolio using a reduced‐form Markovian model with interacting default intensities. Using the dynamic programming principle, we establish a lattice dependence structure between the Hamilton‐Jacobi‐Bellman equations associated with the default states of the portfolio. We show existence and uniqueness of a classical solution to each equation and characterize them in terms of solutions to inhomogeneous Bernoulli type ordinary differential equations. We provide a precise characterization for the directionality of the CDS investment strategy and perform a numerical analysis to assess the impact of default contagion. We find that the increased intensity triggered by default of a very risky entity strongly impacts size and directionality of the investor strategy. Such findings outline the key role played by default contagion when investing in portfolios subject to multiple sources of default risk.
Keywords:dynamic portfolio optimization  credit default swaps  contagion risk  interacting default intensities
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号