Leveraging Big Data to Develop Supply Chain Management Theory: The Case of Panel Data |
| |
Authors: | Jason W. Miller Daniel C. Ganster Stanley E. Griffis |
| |
Affiliation: | 1. Michigan State University;2. Colorado State University |
| |
Abstract: | Increased data availability is poised to shape both business practice and supply chain management (SCM) research. This article addresses an issue that can arise when trying to use big data to answer academic research questions. This issue is that distilled data often have a panel structure whereby repeated measurements are available on one or more variables for a substantial number of subjects. Thus, to fully leverage the richness of big data for academic research, SCM scholars need an understanding regarding the different types of research questions answerable with panel data. In this article, we devise a framework detailing different types of research questions SCM scholars can answer with panel data. This framework provides a basis to categorize how SCM scholars have examined the services supply chain setting of health care with public data regarding hospital‐level patient satisfaction. We extend prior research by testing a series of three questions not yet examined in this area by fitting a series of structured latent curve models to seven years of hospital‐level patient satisfaction for nearly 4,000 hospitals. The discussion highlights theoretical and methodological challenges SCM scholars are likely to encounter as they use the panel data in their research. |
| |
Keywords: | big data panel data repeated measures structured latent curve models |
|