首页 | 本学科首页   官方微博 | 高级检索  
     


On the Efficiency of Conditional Heteroskedasticity Models
Authors:Lee  T. Y.  Wirjanto  Tony
Affiliation:(1) Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, N2L-3G1, Canada
Abstract:This paper discusses how conditional heteroskedasticity models can be estimated efficiently without imposing strong distributional assumptions such as normality. Using the generalized method of moments (GMM) principle, we show that for a class of models with a symmetric conditional distribution, the GMM estimates obtained from the joint estimating equations corresponding to the conditional mean and variance of the model are efficient when the instruments are chosen optimally. A simple ARCH(1) model is used to illustrate the feasibility of the proposed estimation procedure.
Keywords:Financial time series  ARCH  non-normality  generalized method of moments  optimal choice of instruments  maximum likelihood  efficiency
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号