首页 | 本学科首页   官方微博 | 高级检索  
     


Designs for estimating an extremal point of quadratic regression models in a hyperball
Authors:Viatcheslav B. Melas   Andrey Pepelyshev  Russell C. H. Cheng
Affiliation:(1) Department of Mathematics, St. Petersburg State University, Bibliotechnaya sq., 2, 198904 St. Petersburg, Russia;(2) Department of Mathematics, St. Petersburg State University, Bibliotechnaya sq., 2, 198904 St. Petersburg, Russia;(3) Department of Mathematics, University of Southampton, Highfield, SO17 1BJ Southampton, United Kingdom
Abstract:This paper is devoted to studying optimal designs for estimating an extremal point of a multivariate quadratic regression model in the unit hyperball. The problem of estimating an extremal point is reduced to that of estimating certain parameters of a corresponding nonlinear (in parameters) regression model. For this reduced problem truncated locally D-optimal designs are found in an explicit form. The result is a generalization of the results of Fedorov and Müller (1997) for onedimensional quadratic regression function in the unit segment.Received February 2002
Keywords:Estimating of an extremum point  quadratic regression model  truncated locally D-optimal designs  equivalence theorems
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号