首页 | 本学科首页   官方微博 | 高级检索  
     

基于投资者行为参数的股票指数广义回归神经网络预测模型
引用本文:方勇,孙绍荣. 基于投资者行为参数的股票指数广义回归神经网络预测模型[J]. 商业研究, 2007, 0(11): 14-18
作者姓名:方勇  孙绍荣
作者单位:上海理工大学,管理学院,上海,200093
基金项目:国家自然科学基金;上海市重点学科资助建设项目;上海市重点基础研究项目
摘    要:在运用神经网络模型对股票价格进行短期预测时,一般的神经网络预测模型都是以价格的时间序列滞后作为输入变量,但是由于影响价格的因素错综复杂,很多因素无法准确测量,而且市场信息的噪音太大,因此预测效果往往不太理想,于是如何选择有效的输入变量就成为一个困扰这项研究的难题。

关 键 词:行为参数  广义回归神经网络  股票指数  预测模型
文章编号:1001-148X(2007)11-0014-04
收稿时间:2007-02-05
修稿时间:2007-02-05

General Regression Neural Network Forecasting Model of Stock Index Based on Behavioral Parameters of Investors
FANG Yong,SUN Shao-rong. General Regression Neural Network Forecasting Model of Stock Index Based on Behavioral Parameters of Investors[J]. Commercial Research, 2007, 0(11): 14-18
Authors:FANG Yong  SUN Shao-rong
Affiliation:College of Management, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract:When making short - term forecasting for stock price, general neural network models take lags of price time series as input variables. But the factors affecting price are complex, and many are impossible to be accurately measured and the noise of market information is too heavy, so forecasting effect is not satisfactory. Then how to select effective input variables becomes a disturbing problem in research.
Keywords:behavioral parameters   general regression neural network   stock index   forecasting model
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号