首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Towards a responsive-sustainable-resilient tea supply chain network design under uncertainty using big data
Institution:Department of Industrial Engineering, Babol Noshirvani University of Technology, Babol, Iran
Abstract:Nowadays, issues such as limited natural resources, environmental problems, social matters, and significance of resilience in agricultural supply chain (ASC) have dragged considerable attention worldwide. In this research, a five-level multi-objective stochastic mixed-integer linear programming model is designed for tea supply chain (TSC) in Iran. The objective functions of the suggested network are minimizing total costs of the supply chain (SC), the total water consumption, and non-resilience measures, and maximizing job opportunities of facilities. Literally, considering uncertainty for SC networks is extremely beneficial due to the existence of some variations in different parameters like demand. As a consequence, a robust possibilistic optimization (RPO) is implemented to manage the uncertainty. Due to the nature of the multi-objective optimization problem, the weighted-normalized-extended goal programming (WNEGP) approach is employed to solve the model. In order to credit the model, real data is collected from the tea organization of Iran. It is worth mentioning that parameters are gathered according to three aspects of big data: volume, velocity, and variety. The results validated the functionality of the model regarding planning strategy. In addition, it showed applying more costs on SC triggers an effective sustainable-resilient-responsive network. In terms of managerial insights, this study offers a far-reaching perspective to managers especially in ASC to develop their industries. Finally, some sensitivity analyses are discussed on key parameters such as demand, robustness coefficients, and also the value of the objective functions in various states. It is worth mentioning that sensitivity analyses on different states of the problem show how sustainability and resiliency affect the supply chain efficiency.
Keywords:Tea supply chain  Resiliency  Sustainability  Responsiveness  Big data  Robust possibilistic optimization  Weighted-normalized-extended goal programming
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号