首页 | 本学科首页   官方微博 | 高级检索  
     


Short run and long run causality in time series: inference
Authors:Jean-Marie Dufour,Denis Pelletier,É  ric Renault
Affiliation:1. CIRANO, CIREQ, and Département de sciences économiques, Université de Montréal, C.P. 6128 succursale Centre-ville, Montréal, Qué., Canada H3C 3J7;2. CIRANO, CIREQ, Université de Montréal, and Department of Economics, North Carolina State University, Campus Box 8110, Raleigh, NC 27695-8110, USA;3. CIRANO, CIREQ, and Département de sciences économiques, Université de Montréal, C.P. 6128 succursale Centre-ville, Montréal, Qué., Canada H3C 3J7
Abstract:We propose methods for testing hypothesis of non-causality at various horizons, as defined in Dufour and Renault (Econometrica 66, (1998) 1099–1125). We study in detail the case of VAR models and we propose linear methods based on running vector autoregressions at different horizons. While the hypotheses considered are nonlinear, the proposed methods only require linear regression techniques as well as standard Gaussian asymptotic distributional theory. Bootstrap procedures are also considered. For the case of integrated processes, we propose extended regression methods that avoid nonstandard asymptotics. The methods are applied to a VAR model of the US economy.
Keywords:C1   C12   C15   C32   C51   C53   E3   E4   E52
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号