首页 | 本学科首页   官方微博 | 高级检索  
     

基于孤立点消除合理选择训练样本的物流预测
作者姓名:邓湧
摘    要:为了提高物流需求的预测精度,提出一种基于消除孤立点合理选择训练样本的物流预测(IFCM-RBFNN)。首先采用密度方法识别和剔除原始物流需求数据中的孤立点,消除孤立点对聚类结果的不利影响;然后采用模糊均值聚类(FCM)算法对物流需求数据进行聚类,选择最优训练样本集;最后采用RBF神经网络建立物流需求预测模型,并采用仿真实验对其性能进行测试。仿真结果表明,相对于对比模型,IFCM-RBFNN提高了物流需求的预测精度,预测结果更加可靠。

关 键 词:物流需求  RBF神经网络  模糊均值聚类  密度方法  预测精度
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号