首页 | 本学科首页   官方微博 | 高级检索  
     

基于ResNet_NSCS的通信信号调制识别
引用本文:高思丽,应文威,郭贵虎,陈增茂. 基于ResNet_NSCS的通信信号调制识别[J]. 国际商务研究, 2020, 60(5)
作者姓名:高思丽  应文威  郭贵虎  陈增茂
作者单位:1.解放军91977部队,北京 102249;2.解放军91917部队,北京 102401;3.哈尔滨工程大学 信息与通信工程学院,哈尔滨 150001
基金项目:国家自然科学基金资助项目(61401196)
摘    要:针对通信信号调制识别的特征提取问题,为进一步提高识别准确率,提出了一种基于嵌套式跳跃连接结构的残差网络(ResNet of Nested Shortcut Connection Structure,ResNet_NSCS)调制识别算法。该算法在残差神经网络(Residual Neural Network,ResNet)基础上,通过借鉴ResNet多通路选择思路,引入嵌套式恒等跳跃连接结构,利用提取的特征实现不同调制方式的分类。仿真结果表明,面向RadioML2016.10a数据集,较卷积神经网络(Convolutional Neural Network,CNN)算法和卷积神经网络_长短时记忆网络(Convolutional Neural Network_Long Short Term Memory Network,CNN_LSTM)算法,以增加网络复杂度为代价,ResNet_NSCS算法收敛速度快,识别准确率高。

关 键 词:通信信号;调制识别;残差网络;恒等跳跃连接

Communication Signal Modulation Recognition Based on ResNet_NSCS
GAO Sili,YING Wenwei,GUO Guihu,CHEN Zengmao. Communication Signal Modulation Recognition Based on ResNet_NSCS[J]. International Business Research, 2020, 60(5)
Authors:GAO Sili  YING Wenwei  GUO Guihu  CHEN Zengmao
Abstract:For the feature extraction problem of communication signal modulation recognition,a residual neural network of nested shortcut connection structure(ResNet_NSCS) modulation identification method is proposed to further improve the recognition accuracy.Based on the residual neural network,this algorithm introduces the nested shortcut connection structure,then uses the extracted features to realize the classification of different modulation modes.This thinking comes from the ResNet multi-path selection idea.The simulation results show that ResNet_NSCS algorithm is better than convolutional neural network(CNN) and CNN-long short term memory network(CNN_LSTM) algorithm for the dataset of RadioML2016.10a.The recognition accuracy is improved at the cost of increasing network complexity.Also the convergence speed of this algorithm is faster and the recognition accuracy is higher.
Keywords:communication signal  modulation recognition  residual network  identity shortcut connection
点击此处可从《国际商务研究》浏览原始摘要信息
点击此处可从《国际商务研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号