首页 | 本学科首页   官方微博 | 高级检索  
     


On the equivalence of the Arrow impossibility theorem and the Brouwer fixed point theorem when individual preferences are weak orders
Authors:Yasuhito Tanaka
Affiliation:Faculty of Economics, Doshisha University, Kamigyo-ku, Kyoto 602-8580, Japan
Abstract:We will show that in the case where there are two individuals and three alternatives (or under the assumption of the free-triple property), and individual preferences are weak orders (which may include indifference relations), the Arrow impossibility theorem [Arrow, K.J., 1963. Social Choice and Individual Values, second ed. Yale University Press] that there exists no binary social choice rule which satisfies the conditions of transitivity, Pareto principle, independence of irrelevant alternatives, and non-existence of dictator is equivalent to the Brouwer fixed point theorem on a 2-dimensional ball (circle). Our study is an application of ideas by Chichilnisky [Chichilnisky, G., 1979. On fixed points and social choice paradoxes. Economics Letters 3, 347–351] to a discrete social choice problem, and also it is in line with the work by Baryshnikov [Baryshnikov, Y., 1993. Unifying impossibility theorems: a topological approach. Advances in Applied Mathematics 14, 404–415].
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号