首页 | 本学科首页   官方微博 | 高级检索  
     

支持向量机在装备维修备件需求量预测中的应用
引用本文:段鹏飞,周绍骑. 支持向量机在装备维修备件需求量预测中的应用[J]. 物流科技, 2010, 33(4): 67-69
作者姓名:段鹏飞  周绍骑
作者单位:后勤工程学院,重庆,401311
摘    要:利用支持向量机回归算法建立备件需求模型,对未来备件需求进行了预测,并结合实例将支持向量回归算法与传统的最小二乘拟合方法作比较。结果表明,支持向量回归算法在预测精度上具有明显的优势,该方法能够较好地适应样本数量较少、需求呈非线性特征的备件预测问题。

关 键 词:支持向量机  备件  预测

Application of Support Vector Machine in Spare Parts Requirement Forecasting
DUAN Peng-fei,ZHOU Shao-qi. Application of Support Vector Machine in Spare Parts Requirement Forecasting[J]. Logistics Management, 2010, 33(4): 67-69
Authors:DUAN Peng-fei  ZHOU Shao-qi
Affiliation:Logistical Engineering University/a>;Chongqing 401311/a>;China
Abstract:This paper applies support vector regression algorithm to establish spare parts demand model,to predict the future spare parts requirement.Examples will be combined with support vector regression algorithm with the traditional least-squares fitting method for comparison.Results show that support vector regression excels least square in forecasting accuracy.This method can better adapt to relatively small sample size,and nonlinear characteristics data.
Keywords:support vector machine  spare parts  forecast  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号