首页 | 本学科首页   官方微博 | 高级检索  
     

免疫粒子群算法下向量机参数选择及金融应用
引用本文:林菁,江琳. 免疫粒子群算法下向量机参数选择及金融应用[J]. 福建金融管理干部学院学报, 2012, 0(3): 60-64
作者姓名:林菁  江琳
作者单位:河海大学机电学院;福建江夏学院人文传媒系
摘    要:针对粒子群算法易陷入局部最优值的缺点,将免疫原理引入粒子群算法中,利用免疫记忆与自我调节机制促使各适应度层次的粒子维持一定浓度,保证群体的多样性,从而避免算法陷入局部最优。随后将这种改进的算法应用于支持向量机参数的选择,并在BreaStCancer等数据集上进行了实验,实验结果表明利用免疫粒子群算法选取支持向量机最优参数,能够提高支持向量机的分类正确率,具有一定的实用性,特别在经济金融应用上前景可观。

关 键 词:支持向量机  免疫粒子群算法  参数选择

Parameter Selection of Support Vector Machines Based On Immune Particle Swarm Optimization Algorithm and Its Application in Finance
Lin Jing,Jiang Lin. Parameter Selection of Support Vector Machines Based On Immune Particle Swarm Optimization Algorithm and Its Application in Finance[J]. Journal of Fujian Institute of Financial Administrators, 2012, 0(3): 60-64
Authors:Lin Jing  Jiang Lin
Affiliation:Lin Jing,Jiang Lin
Abstract:To avoid trapping into local optimization of Particle Swarm Optimization(PSO) algorithm,the principle of immune was introduced to improve the PSO algorithm for searching the optimal parameters of support vector machines(SVM).The improved method utilized the function of immune memory and the self adjustment mechanism to maintain the concentration of particles at a certain level in every layer to guarantee the diversity of population.So it avoided the problem of local optimization.The improved algorithm was verified with the Breast Cancer,Ionosphere and German datasets.The results demonstrate that the algorithm can improve the overall performance of SVM classifier and its application in the field of finance will lead to prosperous future.
Keywords:SVM  parameter selection  immune particle swarm algorithm.
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号