Asymptotic inference for a one-dimensional simultaneous autoregressive model |
| |
Authors: | Sándor Baran Gyula Pap |
| |
Affiliation: | 1.Faculty of Informatics,University of Debrecen,Debrecen,Hungary;2.Bolyai Institute,University of Szeged,Szeged,Hungary |
| |
Abstract: | A nonstationary simultaneous autoregressive model ({X^{(n)}_k=alpha Big(X^{(n)}_{k-1}+X^{(n)}_{k+1}Big)+varepsilon_k, k=1, 2, ldots , n-1}), is investigated, where ({X^{(n)}_0}) and ({X^{(n)}_n}) are given random variables. It is shown that in the unstable case α = 1/2 the least squares estimator of the autoregressive parameter converges to a functional of a standard Wiener process with a rate of convergence n 2, while in the stable situation |α| < 1/2 the estimator is biased but asymptotically normal with a rate n 1/2. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|