首页 | 本学科首页   官方微博 | 高级检索  
     


Asymptotic inference for a one-dimensional simultaneous autoregressive model
Authors:Sándor Baran  Gyula Pap
Affiliation:1.Faculty of Informatics,University of Debrecen,Debrecen,Hungary;2.Bolyai Institute,University of Szeged,Szeged,Hungary
Abstract:A nonstationary simultaneous autoregressive model ({X^{(n)}_k=alpha Big(X^{(n)}_{k-1}+X^{(n)}_{k+1}Big)+varepsilon_k, k=1, 2, ldots , n-1}), is investigated, where ({X^{(n)}_0}) and ({X^{(n)}_n}) are given random variables. It is shown that in the unstable case α = 1/2 the least squares estimator of the autoregressive parameter converges to a functional of a standard Wiener process with a rate of convergence n 2, while in the stable situation |α| < 1/2 the estimator is biased but asymptotically normal with a rate n 1/2.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号