首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Stochastic mortality models: an infinite-dimensional approach
Authors:Stefan Tappe  Stefan Weber
Institution:1. Institut für Mathematische Stochastik, Leibniz Universit?t Hannover, Welfengarten 1, 30167, Hannover, Germany
Abstract:Demographic projections of future mortality rates involve a high level of uncertainty and require stochastic mortality models. The current paper investigates forward mortality models driven by a (possibly infinite-dimensional) Wiener process and a compensated Poisson random measure. A major innovation of the paper is the introduction of a family of processes called forward mortality improvements which provide a flexible tool for a simple construction of stochastic forward mortality models. In practice, the notion of mortality improvements is a convenient device for the quantification of changes in mortality rates over time, and enables, for example, the detection of cohort effects. We show that the forward mortality rates satisfy Heath–Jarrow–Morton-type consistency conditions which translate to conditions on the forward mortality improvements. While the consistency conditions for the forward mortality rates are analogous to the classical conditions in the context of bond markets, the conditions for the forward mortality improvements possess a different structure. Forward mortality models include a cohort parameter besides the time horizon, and these two dimensions are coupled in the dynamics of consistent models of forward mortality improvements. In order to obtain a unified framework, we transform the systems of Itô processes which describe the forward mortality rates and improvements. In contrast to term structure models, the corresponding stochastic partial differential equations (SPDEs) describe the random dynamics of two-dimensional surfaces rather than curves.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号