首页 | 本学科首页   官方微博 | 高级检索  
     

对一类矩阵秩的恒等式的研究证明
引用本文:张岩. 对一类矩阵秩的恒等式的研究证明[J]. 价值工程, 2012, 31(31): 241-242
作者姓名:张岩
作者单位:东北石油大学,大庆,163000
摘    要:在何种条件下,Sylvester不等式化为等式是当前研究的重点。本文利用λ矩阵及其初等变换对应到分块矩阵diag{A+k1E,A+k2E,…,A+ktE}中,使得当k1,k2,…,kt在满足一定的条件时,有sum (R(A+kiE)=R) from i=1 to t multiply ((A+kiE)+(t-1)n) from i=1 to t.

关 键 词:  λ矩阵  初等变换  分块阵

Proof of the Identities of a Class of Matrix Rank
ZHANG Yan. Proof of the Identities of a Class of Matrix Rank[J]. Value Engineering, 2012, 31(31): 241-242
Authors:ZHANG Yan
Affiliation:ZHANG Yan(Northeast Petroleum University,Daqing 163000,China)
Abstract:Under any conditions,to change the inequality Sylvester into equation is the focus of the current study.This paper used the λ matrix and its elementary transformation to correspond to the partitioned matrix diag{A+k1E,A+k2E,…,A+ktE},so that when k1,k2,…,kt meet certain conditions,there are sum (R(A+kiE)=R) from i=1 to t multiply ((A+kiE)+(t-1)n) from i=1 to t.
Keywords:rank  λ matrix  elementary transformation  chunkedarray
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号